
Centralium: A Hybrid Route-Planning Framework for Large-Scale
Data Center Network Migrations

Yikai Lin, Mohab Gawish, Shih-Hao Tseng, Lixin Gao†, Cen Zhao, John Tracey, Sunyi Shao,
Hyojeong Kim, Ying Zhang

Meta Platforms, Inc. †University of Massachusetts Amherst

Abstract
Meta’s data center networks have relied on BGP for routing and in-
terconnectivity due to its scalability and simplicity. However, as our
network evolves, BGP’s limitations in supporting complex network
migrations have become apparent. These migrations require cus-
tomized routing at each intermediate step, considering topological
properties. In this paper, we highlight the unique challenges of pro-
duction migration and illustrate how native BGP falls short, unable
to encode both sequential and spatial conditions. To address this
challenge, we introduce a novel Route Planning Abstraction (RPA)
that augments the BGP protocol to support migration. It enables
centralized route planning while maintaining distributed enforce-
ment. We demonstrate the power of this abstraction by developing
Centralium, a hybrid route-planning framework with a centralized
controller, and over ten use cases to support various migrations in
production. Our production experience with Centralium, deployed
alongside BGP in large-scale data centers, has shown substantial
reduction in the time and risk of network migration operations.

CCS Concepts
• Networks → Data center networks; Routing protocols; Net-
work design and planning algorithms; Network manageabil-
ity; Programmable networks.

Keywords
Centralized Routing, Distributed Routing, NetworkMigration, Route
Planning, BGP
ACM Reference Format:
Yikai Lin, Mohab Gawish, Shih-Hao Tseng, Lixin Gao, Cen Zhao, John
Tracey, Sunyi Shao, Hyojeong Kim, Ying Zhang. 2025. Centralium: A Hy-
brid Route-Planning Framework for Large-Scale Data Center Network
Migrations. In ACM SIGCOMM 2025 Conference (SIGCOMM ’25), Septem-
ber 8–11, 2025, Coimbra, Portugal. ACM, New York, NY, USA, 14 pages.
https://doi.org/10.1145/3718958.3750519

1 Introduction
Meta’s data center networks (DCNs) support the infrastructure
that delivers compute and storage capabilities to satisfy the needs
of billions of users. In order to accommodate the ever-increasing
needs of users and applications, data center networks typically

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SIGCOMM ’25, Coimbra, Portugal
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1524-2/2025/09
https://doi.org/10.1145/3718958.3750519

have to perform frequent network migrations. These migrations
are triggered for various reasons, such as introducing new topolo-
gies, upgrading to new hardware and technology, decommissioning
old equipment, expanding capacity, evolving routing design, and
supporting service-specific requirements. Network migration tasks
typically involve hundreds to thousands of switches, leading to
significant changes in network topology and capacity. These migra-
tions can span from days to months, requiring careful coordination
among multiple teams to ensure no degradation in the performance
of the production network. Naively draining an entire region and
performing migration is too disruptive and results in significant
loss of capacity. Furthermore, dependencies may prevent services
from being completely moved out of a region, making live network
migration a critical requirement.

A critical component in a network migration is route planning.
A routing plan consists of a sequence of routing rules that indicate
which forwarding paths to select for each destination and how to
split traffic among these paths. Unlike prescribing only the paths for
the current network, a route plan for a migration designs a sequence
of routing snapshots for intermediate steps in the migration. Its
intent can often be described in a conditional term: “If the network
is in this condition, use this specific path assignment.” We argue
that route planning for migration is a critical but yet previously
overlooked problem in the literature. In this paper, we first use
production case studies and quantification to introduce the problem
and stress the challenge of solving this problem.

Border Gateway Protocol (BGP) being a viable routing solution in
data center networks has been well known in the industry. Thanks
to its scalability and flexible policy control, BGP is used heavily
throughout our production networks. In the past, we have shared
production experiences on running BGP at scale in our data cen-
ters [1, 24]. However, throughout years of operational experiences,
we have increasingly realized one fundamental limitation of BGP:
as a purely distributed routing protocol, its inability to provide tight
control during network dynamics and migrations. We elaborate
on the following challenges that have been overlooked in previous
research.

First, DCN migration can cause first/last router collapse. The
CLOS topology typical of DCNs features multiple paths to reach
any destination. All next-hops with equal path form an ECMP group.
However, migration changes ECMPmembership greatly. Sometimes
a new router is inserted to the topology, creating a shorter path
than all existing ones, breaking the symmetry property of DCN. All
traffic will be attracted to this newly added router, a.k.a., first router.
Similarly, sometimes when removing a router layer, the ECMP
group size decreases. The last router left in the group attracts all
traffic, creating congestion.

https://doi.org/10.1145/3718958.3750519
https://doi.org/10.1145/3718958.3750519

SIGCOMM ’25, September 8–11, 2025, Coimbra, Portugal Yikai Lin et al.

Second, supporting such network-wide migration often requires
custom BGP routing policies, which can be achieved only by modi-
fying low-level BGP attributes, such as editing the AS-path. The
interdependent manipulation of BGP attributes throughout the mi-
gration process, enacted by routing policies on each node, needs
to be deliberately planned to yield the desired outcome during and
after the migration.

Third, BGP does not have the ability to specify conditions or
encode sequential steps. BGP can only make instantaneous deci-
sions at a given time given all disseminated updates. For example,
it follows strict rules to select routes based on the available routing
attributes, e.g., local preference, and AS-path. During migration,
operators may need to implement a different preference to accom-
modate the changing nature of the network.

Fourth, while it is known that fully distributed protocols can
cause routing loops and black-holes during convergence, we iden-
tify a new challenge. Specifically, transient states encountered dur-
ing convergence can exhaust forwarding resources. In response to
organic failure and planned maintenance events, BGP goes through
an active convergence process before reaching a steady state. Dur-
ing this process, each node potentially traverses multiple interme-
diate phases, each of which corresponds to a distinct, ephemeral
forwarding state. The rapid succession of intermediate phases can
momentarily exhaust switches’ on-chip memory in which forward-
ing state is stored.

We contend these challenges arise from inherent limitations in
fully distributed routing systems. In BGP, which was originally
designed for interdomain routing where a global network view
is impractical, route planning is handled locally at each routing
element. In contrast, data center networks can leverage a global
view to enhance route planning for migration more effectively.

Our key idea is a novel Route PlanningAbstraction (RPA), achieved
by integrating a RIB (Routing Information Base) policy module into
the BGP daemon. It enables explicit and direct prescription of routing
intent through a simple yet effective interface. For instance, instead
of indirectly influencing BGP’s route decisions through attribute
manipulation, our approach allows for the installation of specific
routing rules, such as “utilize both shortest and non-shortest paths
equally” for a given destination. This ensures a fixed number of
paths are used, even when shortest paths are much limited during
intermediate migration steps, thereby preventing congestion.

In this paper, we introduce Centralium, a routing system that
combines centralized planning with distributed enforcement. Un-
like existing centralized control approaches, Centralium minimizes
the role of the controller to complex route planning during migra-
tion, while relying on traditional BGP for steady-state routing deci-
sions. The key innovation lies in the abstraction of route planning
for migration using the RPA API and the corresponding modifica-
tions to BGP for distributed enforcement. More specifically, this
paper presents three technical contributions.

First, we present a comprehensive analysis of the operational
challenges encountered when relying solely on BGP for routing
during DCN migrations. Our contributions include a migration tax-
onomy, real-world examples illustrating complex migration cases,
and quantitative insights into the frequency of these occurrences,
based on production data. To our knowledge, this is the first study to

highlight the dynamic state challenges of DCN migrations, offering
valuable insights for future routing research.

Second, we introduce Route Planning Abstraction (RPA), a funda-
mental component of the Centralium platform. The RPA comprises
a centralized plan and a set of simple APIs, enabling support for a
wide range of use cases during migration. We present the system
design and sequencing deployment methodology, which ensures
safety and correctness.

Third, we demonstrate the capabilities of Centralium through
over ten applications tailored to various migration scenarios. At
its core, Centralium supersedes BGP’s native path selection with
a priority-based algorithm, allowing operators to define explicit
routing rules using a list of path sets. It enables precise control
over traffic distribution across multiple paths, effectively mitigating
traffic funneling during migration.

Centralium has been successfully deployed inMeta’s data centers
for four years, managing hundreds of thousands of switches. Our
operational experience with the system has significantly reduced
migration time (e.g., from weeks to hours) and improved network
resiliency (e.g., enabling half of previously disruptive backbone
maintenance).

2 Background
We provide an overview of our data center network topology and
overall routing design. A more-detailed introduction is presented
in Sections A.1 and A.2.
Data Center Topology. Our data center network consists of five
horizontal layers from bottom to top: Rack Switches (RSWs), Fabric
Switches (FSWs), Spine Switches (SSWs), Fabric Aggregate Downlink
Units (FADUs), and Fabric Aggregate Uplink Units (FAUUs). The
FAUUs connect to the backbone devices (e.g., EBs) that interconnect
data centers. Logical groupings of switches, such as pod, plane, and
grid, are introduced as units of deployment. See Figure 1.
Data Center Routing.We employ two types of distributed rout-
ing protocols in our data center networks: a path-vector protocol,
BGP [1], for production prefixes, and an in-house link-state proto-
col, Open/R [11], for infrastructure prefixes that facilitate network
device connectivity, management, and diagnostics. Both protocols
run concurrently on every layer of our DC network. Centralium
leverages Open/R as a resilient, out of band management network
while it augments BGP with its centralized intent.
Traffic Distribution. One distinct property of data center CLOS
topology is the large number of parallel paths between any pair
of servers. Traffic distribution is typically achieved by Equal Cost
Multi-Path (ECMP) in BGP. Network faults and maintenance can
cause topology asymmetry. This can negatively impact traffic dis-
tribution uniformity otherwise achieved by ECMP. We therefore
employ Unequal Cost Multi-Path (UCMP) or Weighted Cost Multi-
Path (WCMP) [22]. WCMP is supported by BGP by incorporating
available path capacity in the hashing decision.

3 Challenges in DCN Migration
We run BGP [1] as the routing protocol for production prefixes
in our data center networks for its high reliability and scalability.
However, as we evolve our data center networks toward higher
capacity, efficiency, and reliability, one apparent limitation to a

Centralium: A Hybrid Route-Planning Framework for Large-Scale Data Center Network Migrations SIGCOMM ’25, September 8–11, 2025, Coimbra, Portugal

Figure 1: Abstract Meta Data Center Topology

purely distributed routing protocol is that it cannot support route
planning for network migration that lasts days to weeks. In the fol-
lowing section, we explain this problem which is overlooked by the
existing literature. We quantify our production data to demonstrate
its significance and operational challenges.

3.1 DCN Migrations
Network migration involves modifying the network infrastructure
by adding, removing, or swapping switches and circuits at the
physical layer, as well as making configuration changes that may
potentially disrupt traffic. This is a common operation in data center
networks and can be initiated for various reasons, such as adopting
new hardware and technology, decommissioning old equipment,
expanding capacity, and introducing new topology or routing.

A network migration task typically affects tens to thousands of
switches, often requiring physical deployment work on-site that
can last for weeks. Simply draining (i.e., steering traffic away from)
the entire cluster or region to perform migration is not feasible, as
this brute-force method would result in a significant loss of capac-
ity, impacting service performance. Additionally, it is sometimes
impossible to drain the entire region due to strict requirements on
service location. Therefore, live network migration is necessary. The
paper provides a characterization of various migrations in Table 1
and offers examples in subsequent sections.
Routing System Evolution. Our DC routing layout has evolved
over multiple iterations to adapt to new application requirements,
simplify topology, and eliminate legacy features. The same intent
can be implemented in different ways. For example, in the past few
years, we gradually updated the entire fleet from manually crafted
policy to automatically compiled policy [24].
Incremental Capacity Scaling. The DC physical topology is con-
stantly evolving to increase capacity, phase out legacy platforms,
incorporate new hardware, or overhaul infrastructure to improve
cooling, space, or power efficiency. It ranges from upgrading port
speed to wiring a new topology [39]. It is one of the most large-scale
migrations which can span over 6 months. Section 3.2 gives one
such example.
Differential Traffic Distribution. Traffic is selectively allocated
to specific forwarding paths based on service type. For example, we
apply a special policy to anycast load-bearing prefixes for routing
stability during maintenance that breaks network symmetry.
Routing Policy Transitions. Routing policy intent changes to
adapt to evolving services traffic forwarding objectives. For exam-
ple, some services may require conditional primary and backup

Table 1: Network Migration Categories

Migration Operation
Frequency

Change
Scope

Typical
Duration

(a) Routing System Evolution 10+/year Multi-DC ~1.5 months
(b) Incremental Capacity Scaling 10+/year Multi-DC ~6 months
(c) Differential Traffic Distribution 10+/year Sub-DC ~2 months
(d) Routing Policy Transitions 10+/year Multi-DC ~3 months

(e) Traffic Drain For Maintenance Daily Multi-DC <1 hour

policies, while others may demand custom proximity-based for-
warding preferences.
Traffic Drain for Maintenance. Traffic flows are shifted on and
off parts of the network during maintenance.

3.2 Scenario 1: First Router Problem in
Topology Expansion

Figure 2 shows a topology composed of five layers1. The topology
is slated for a capacity expansion by replacing two layers (FAv1 and
Edge) in the initial state with a single layer with bigger capacity
(FAv2) in the final state.

To perform the operation incrementally without traffic disrup-
tion, FAv2 nodes must be introduced into the traffic forwarding
path before FAv1 and Edge are removed, as shown in Figure 2. The
intermediate state where the two old layers and the new one coexist
forms a transitory topology. Given the asynchronous nature of BGP
path convergence, native BGP may result in a first-router problem,
where the first SSW to advertise the new path in the transitory topol-
ogy attracts all traffic. This is because the new path has a shorter
AS-path length, which is preferred by default BGP path selection.
Furthermore, given that new nodes are deliberately deployed into
the production environment incrementally, not all FAv2 nodes are
activated at once. The first FAv2 node to be activated will unduly
attract all SSW and Backbone traffic, even after BGP converges to
a steady state.

Naive approach: To avoid the funneling problem in traditional
BGP, one could rely on ad-hoc policy to manipulate the BGP at-
tributes, e.g., by padding the AS-path of the route received from
FAv2 by one ASN on an SSW. However, such transitory policies
must be cleaned up after the migration is complete. Worse, redact-
ing them may result in another first-router capacity collapse. For
example, removing the AS-path padding on SSWs can cause FSWs
to momentarily funnel northbound traffic to the first converging
SSW, as it will advertise paths with a shorter AS-path length.
Production Quantification. The migration described in this ex-
ample is not an exception but rather typical of day-to-day DC
operations. Figure 3 shows five major categories of migrations and
the average number of switches involved per layer. Figure 3 clearly
indicates the migration scale is large and involves more switches at
lower layers. Except for Maintenance Traffic Drain which typically
involves hundreds of switches, mostmigrations involve tens of thou-
sands of devices. Handling migrations at such scale and frequency
with traditional BGP practices is prohibitively complex and costly.

1This example is derived from migrations on an older topology, hence the deviation
from Figure 1.

SIGCOMM ’25, September 8–11, 2025, Coimbra, Portugal Yikai Lin et al.

Figure 2: A topology evolution example: introducing a single switch layer to replace two existing layers. Some transitory state
(e.g., state A) could cause funneling of traffic due to first router problem.

1

10

10
2

10
3

10
4

FAUU

FADU

SSW

FSW

RSW

Figure 3: Average number of switches involved per layer. Left
to right: Traffic Drain for Maintenance, Differential Traffic
Distribution, Incremental Capacity Scaling, Routing System
Evolution, Routing Policy Transitions.

3.3 Scenario 2: Last Router Problem in
Decommission

We show a concrete example of the last router problem in another
topology evolution scenario. Figure 4 shows a simplified topology
with only two layers. The connections between SSWs and FADUs
are set up such that SSW-N in every plane is connected only to
FADU-N in every grid and vice versa. The objective of the migration
is to decommission all SSWs and FADUs with the same numbering,
say 1, to make space for new switches and additional cabling. These
switches must be drained and then decommissioned.

Operators could drain all FADU-1s first, at which point SSW-1s
would have zero next-hops and be safe to remove, or vice versa.
Due to the asynchronous nature of drain and BGP convergence,
there will be transitory states during the operation where some
FADU-1s or SSW-1s are still live and attracting traffic. As shown in
Figure 4, the few remaining live switches will suffer funneling of
traffic (last router problem) until they get drained and the network
converges to a steady state. Packets will be dropped during this
time.

Ideally, switches whose number of available next-hops drops
below a safe threshold should stop attracting traffic. In standard
BGP this threshold is implicitly zero as BGP will only withdraw a
route when there is no available next-hop.

Naive approach: Some vendors support specification of minimum
ECMP [34] that allows BGP to withdraw a route when the number
of available next-hops falls below a non-zero threshold. However,
setting and resetting this policy configuration add additional steps
and substantial delays to the migration. Enacting this policy on

a selected set of switches also introduces overhead for managing
these transient policy exceptions.

3.4 Scenario 3: Forwarding State Exhaustion by
Intermediate Migration States

As BGP converges, prefixes are exchanged across multiple switch
layers, creating transitory forwarding states. The potentially large
set of forwarding states can exhaust on-chip memory resources.

Figure 5 illustrates one such example we encountered in pro-
duction. EB[1:8] originate and advertise the same set of N prefixes
to UU[1:4], which are then advertised downstream to DU through
eight BGP sessions (i.e., two sessions per UU-DU pair).

During EB[1:2] maintenance, a preset BGP export policy is ap-
plied on them such that the prefixes they advertise have less fa-
vorable attributes compared to EB[3:8], effectively transitioning
EB[1:2] from 𝐿𝐼𝑉𝐸 state to 𝑀𝐴𝐼𝑁𝑇𝐸𝑁𝐴𝑁𝐶𝐸. Given that every
individual BGP session converges to the final state independently,
𝐿𝐼𝑉𝐸 EBs could assume one of the following groups during conver-
gence: EB[1:8] (initial state), EB[2:8] (EB1 not live), EB[1, 3:8] (EB2
not live), or EB[3:8] (final, converged state). As a result, UU[1:4]
may have up to four next-hop group objects for the N prefixes
during convergence. A next-hop group object is a collection of
next-hops to which packets that belong to the same forwarding
equivalence class (FEC) are hashed. Each of the N prefixes received
from EB[1:8] by each UU map to one of the four next-hop groups.
The maximum number of possible transitory next-hop groups on
UU[1:4] is 𝑠𝑚 , where 𝑠 is the number of states each EB switch can
assume, and𝑚 is the number of EB switches changing their state.
In this specific example, 𝑠 and𝑚 are both 2.

Depending on the next-hop group, a given prefix is mapped to
on UU[1:4], a WCMP weight is assigned, and relayed downstream
to the DUs through a BGP update message in the form of a link-
bandwidth community. Because each DU has eight BGP sessions
toward UU[1:4], the maximum number of possible next-hop groups
on each DU is up to 48 (65536), which far exceeds the maximum
number of next-hop group objects supported by the DU hardware.
The overflow of entries prevents timely update of switches’ for-
warding information, which could lead to packet loss.

Centralium: A Hybrid Route-Planning Framework for Large-Scale Data Center Network Migrations SIGCOMM ’25, September 8–11, 2025, Coimbra, Portugal

Figure 4: When decommissioning a group of interconnected SSWs and FADUs to make space for new switches and additional
cabling, some transitory state (e.g., state B) could cause funneling of traffic due to last router problem.

Figure 5: Transient State Explosion during Distributed
WCMP Convergence.

Native approach: While some control plane implementations
apply heuristics-based optimizations to reduce the possibility of
combinatorial next-hop groups explosion [28], these attempts are
best effort and are not guaranteed to provide protections in every
convergence event.

4 Route Planning Abstraction (RPA)
4.1 Design Choices
While a centralized routing controller can address the problems de-
scribed in Section 3 by directly prescribing routing entries on every
switch, it comes with its own challenges and limitations [8]. These
include, but are not limited to, the high performance requirement
due to decoupling of the control plane from the forwarding elements
(switches receive forwarding information from a remote controller
rather than local, directly connected peers), and the trade-off be-
tween blast radius and scalability (few logical entities managing
hundreds or thousands of switches).

More importantly, from an operational standpoint, it is infeasible
to transition from a fully distributed protocol deployment ([1])
to a fully centralized controller solution without going through
intermediate stages with incremental changes. One possible route is
through vertical slicing, where fully centralized and fully distributed
control-planes coexist, targeting disjoint or overlapping sets of
switches ([5, 14, 30, 37]).

Based on our experience and success running BGP at scale, we
decide to explore a different route where we preserve the autonomy
of the distributed control plane while providing routing programma-
bility to external entities. The key enabler to our solution is the
Route Planning Abstractions (RPAs), a set of custom plug-and-play
constructs in our BGP implementation that can influence the RIB
computation process. In a fully centralized solution, a switch has

Figure 6: RPAs influence rather than take over BGP’s deci-
sion making process without changing how information is
exchanged between BGP peers.

limited routing capability without the controller, as its routing ta-
ble is largely if not completely dictated by the controller. In our
solution however, BGP switches remain independent. RPAs pro-
vide a set of alternative rules/strategies beyond BGP’s local view to
help it make more informed and optimal decisions. These rules and
strategies can be derived and prescribed a priori, thus decoupling
the distributed control plane from the entities deploying the RPAs.
Operators can proactively and asynchronously augment switches
with RPAs and rely on BGP to actively and independently handle
real-time local network changes. For example, BGP can indepen-
dently discover and process new viable routes by locally re-applying
the pre-installed RPAs to update its forwarding entries. Two direct
benefits of this approach are: (1) response to network events is fast
due to locality; (2) policy (RPA) generation can be simple without
the need to maintain precise forwarding entries directly.

In the following subsections, we introduce RPAs from the per-
spective of BGP control-plane workflow (Section 4.2), the different
RPA APIs (Section 4.3), and how they apply to the motivating ex-
amples (Section 4.4).

4.2 RPA Augmented BGP Workflow
Figure 6 depicts an RPA-euipped BGP’s control-planeworkflow. The
workflow starts with receiving routes from BGP peers. The routes
need to first pass standard sanity checks, such as loop avoidance

SIGCOMM ’25, September 8–11, 2025, Coimbra, Portugal Yikai Lin et al.

and local ingress policies. The post-ingress-policy routes then go
through the first RPA module, Route Filter. A Route Filter RPA spec-
ifies which IP subnets and within each subnet what prefix lengths
are allowed. This is typically enacted at boundaries of network
domains, such as between data centers and the backbone. Routes
allowed by a Route Filter RPA are “officially” in the RIB. For each
destination prefix, BGP needs to perform path selection to generate
the multipath set (i.e., set of equally preferred routes) for forward-
ing. Standard BGP path selection criteria would typically prefer
highest local preference, shortest AS-path length, etc. [25]. Using
a Path Selection RPA, however, operators can customize the path
selection criteria and influence the routes selected (e.g., by treating
paths of varying AS-path lengths equally, see Section 3.2). The
selected routes are then (if configured) assigned different weights
for UCMP/WCMP. In a fully distributed UCMP setup, the weights
are derived from local links or peer advertised capacity. Using a
Route Attribute RPA, operators can directly prescribe what and
how weights are assigned, fundamentally eliminating the churn
described in Section 3.4. The weighted multipath set is then sent to
the FIB (Forwarding Information Base) for forwarding. One best
path is selected per destination prefix by BGP using tie breaking
rules and advertised to BGP peers if it passes local egress policies
and another layer of Route Filter RPA.

4.3 RPA Primitives Design
Path Selection RPAs override standard BGP path selection with a
priority-based selection algorithm. Operators describe path selec-
tion intent in the form of an ordered list of path sets. A path set is a
group of operator-defined BGP paths toward a defined destination
(i.e., prefix). Each path set has a distinct signature common across
all member BGP paths it encompasses. A signature is a unique
combination of standard BGP transitive attributes that identifies a
given path set. BGP attributes of member BGP paths in a path set
may not completely overlap, as long as they all share their path set
common signature.

Figure 7a shows its detailed structure. It is defined per group of
destination prefixes that share the same intent.
• Define customPathSetList:Apriority list of path sets that BGP
must select from for forwarding toward the defined destination.
If none of the path sets is matched, BGP falls back to its native
path selection. Whether a path set is matched is determined by
the following two criteria:
• PathSignature: A collection of BGP attribute match criteria
that signify a group of BGP paths toward the specified desti-
nation. An attribute match criteria can be specified as a regular
expression against BGP attributes, e.g., “as_path_regex=^12345”
matches AS_Paths starting with ASN 12345 regardless of
their lengths, effectively equalizing paths of varying lengths
of the same origin. This feature allows operators to prescribe
paths explicitly without tampering with BGP attributes.

• MinNextHop: To avoid traffic funneling when the ECMP
group size shrinks, we can explicitly set the minimum next-
hop value (MinNextHop) for each path set. If not satisfied, the
current path set is not matched even if the signature matches.

• Augment native BGP selection. We can also enhance native
BGP selection by enforcing minimum number of next-hops in

1 PathSelectionRpa {
2 Statement-1 {
3 Destination,
4 PathSetList [
5 PathSet-1 {
6 PathSignature,
7 MinNextHop,
8 }, ...
9],
10 BgpNativeMinNextHop,
11 KeepFibWarmIfMnhViolated,
12 }, ...
13]

(a) path selection

1 RouteAttributeRpa {
2 Statement-1 {
3 Destination,
4 NextHopWeightList [
5 NextHopWeight-1 {
6 PathSignature,
7 Weight,
8 }, ...
9],
10 ExpirationTime,
11 }, ...
12]

(b) route attribute

1 RouteFilterRpa {
2 Statement-1 {
3 PeerSignature,
4 EgressFilter {
5 PrefixSet-1 {
6 Prefix,
7 MinMaskLength,
8 MaxMaskLength,
9 }, ...
10 },
11 IngressFilter {
12 <same_schema_as_egress>
13 }
14 }, ...
15]

(c) route filter

Figure 7: RPA primitives for different routing functions

BgpNativeMinNextHop. Note that this is different from the pre-
vious MinNextHop parameter, as it directly applies to BGP’s
natively selected paths. If this threshold is violated, since there
is nothing to fall back to, BGP must withdraw the route from
its peers. When this happens, operators can specify whether to
keep the forwarding entries of this route so in-flight packets are
not dropped.
Asmentioned in Section 4.2, routes go through the Path Selection

RPA after being accepted into the RIB. If a destination prefix has a
matching Path Selection RPA statement, its routes will be matched
against path sets in that statement. When a route’s attributes match
a path set’s signature, it will be selected, regardless of how those
attributes compare to other routes’. If an incoming route does not
match any of the defined path sets, BGP falls back to its native path
selection algorithm.

For every prefix in the RIB, the Path Selection RPA algorithm
walks the priority list in order and selects the first path set that
has matched enough active routes toward the prefix. All matching
routes of the chosen path set are selected for forwarding and in-
stalled in the FIB, while the least preferred (see Section 5.3) route is
advertised to peers.

Route Attribute RPAs capture operator’s desired traffic distribu-
tion ratio among possible paths toward a destination prefix in an
asynchronous fashion. Unlike in a purely centralized solutionwhere
routing table entries need to be computed concretely and timely,
Route Attribute RPA can be specified a priori and enacted asyn-
chronously when paths are observed and selected for forwarding
by BGP. This is possible because of RPA’s abstract design, allowing
the routing table entries to be computed in a delayed fashion by
the protocol control plane.

Centralium: A Hybrid Route-Planning Framework for Large-Scale Data Center Network Migrations SIGCOMM ’25, September 8–11, 2025, Coimbra, Portugal

• Traffic forwarding behavior across paths is described in the
list NextHopWeightList which encompasses: 1) a BGP path set
which is defined by signatures of BGP attributes (PathSignature,
same as in Path Selection RPA) and 2) an integer valueWeight
indicating the relative weight of paths matched by Signature.

• Operation parameters. We can also define the condition of
those forwarding behaviors. One example is ExpirationTime,
specifying when the statement will be invalidated and BGP
falls back to its native traffic distribution solution (ECMP or
distributed WCMP).
Route Attribute RPAs support traffic engineering solutions that

directly prescribe the desired traffic distribution on every switch,
fundamentally eliminating the transient state explosions we de-
scribed in Section 3.4. Operators can update prescribed weights
using an RPA in anticipation of upcoming maintenance, and rely on
BGP control plane to update the routing entries when the devices
actually go down.

Route Filter RPAs allow operators to dynamically set what pre-
fixes can be exchanged between any BGP peers without changing
the routing policy or path selection criteria.
• Peer signature:We define the set of BGP peers where the policy
is applied (PeerSignature).

• Prefix filter: Since our origination and propagation policies are
deterministic, we choose to apply an allow list for what prefixes
can be exchanged between BGP peers.

• Prefix attribute: To avoid leaking more specific prefixes, we
can set the maximum length of prefix mask. This is crucial in
cases where we only expect a prefix aggregate, and incorrectly
accepting too many specific prefixes can overload the compute
and forwarding resources in switches.

4.4 Case Studies
In this section, we showcase how we use RPAs to resolve the topol-
ogy migration scenarios described in Section 3.2 and Section 3.3.

In our BGP configuration, we typically attach a designated BGP
community to all prefixes at their point of origin [1]. For example,
default route (i.e., 0.0.0.0/0 and ::/0) prefixes advertised downstream
by the backbone have the “BACKBONE_DEFAULT_ROUTE” com-
munity attached.

4.4.1 Equalizing paths of varying AS_Path lengths. In Section 3.2,
the main objective is to equalize paths of varying AS_Path lengths
from the backbone in order to not cause traffic funneling during
the migration. We described how a solution based on AS_Path
editing in BGP routing policy can still be problematic. Using RPA,
we can easily override BGP’s path selection algorithm by directly
prescribing our objective:

1 PathSelectionRpa {
2 Statement-1 {
3 Destination: "BACKBONE_DEFAULT_ROUTE",
4 PathSetList [
5 PathSet-1 {
6 Signature: AS_Path [Backbone_ASN,...]
7 }]}}

In the above RPA snippet, we provide two pieces of information
to BGP: what destination prefixes this RPA applies to, and how

to select paths toward those destinations. By simply specifying
“select paths that start with the backbone AS_Path number,” BGP
neglects the lengths of AS_Paths and selects both old (longer) and
new (shorter) paths for forwarding. With this RPA in place, the
topology migration can be carried out in a non-disruptive fash-
ion with no policy residues post-migration. The RPA can just be
removed, restoring BGP to its native path selection.

4.4.2 Localized and custom capacity collapse prevention. In Section
3.3, the main objective is to prevent transient funneling caused by
switches asynchronously going down, an inherent limitation of
distributed routing protocols. We described how this migration is
impossible to execute safely without resorting to certain minimum
capacity protection configurations. As introduced in Section 4.3,
Path Selection RPAs support specification of minimum next-hop
size for both custom and BGP native path selection algorithms. Ad-
ditionally, since this RPA is a per-switch override, we can selectively
inject the following RPA in the SSWs to be decommissioned:

1 PathSelectionRpa {
2 Statement-1 {
3 Destination: "BACKBONE_DEFAULT_ROUTE",
4 PathSetList [], # empty
5 BgpNativeMinNextHop: 75%,
6 KeepFibWarmIfMnhViolated: True,
7 },
8 }

RPAs allow us to trivially enforce a custom minimum capacity
threshold in a selected subset of devices unique to this particular
migration. With the protection of this RPA, the migration is sig-
nificantly simplified into two steps: draining all FADUs in selected
spine planes, draining all SSWs in the selected spine planes. There
is no funneling (due to minimum next-hop) and no black-holing
(due to FIB kept warm) throughout the entire process.

5 System Implementation
In Section 4, we showed how RPA augments BGP’s distributed
decision making by providing programmability to route planning.
In this section, we focus on our system implementation that makes
RPAs instrumental in production. As depicted in Figure 3, mi-
grations typically involve coordinating hundreds or thousands of
switches. At this scale, it is non-trivial to generate and deploy RPAs
quickly and safely, and to ensure their consistency across the fleet.
To this end, we designed and deployed a logically centralized con-
troller that facilitates BGP route planning in our large-scale DCNs.
The Centralium controller provides the following critical functions:
1. Pre-deployment network health checks. The controller en-

sures the networks meet the prerequisites for the desired RPA.
This can include BGP policy and binary versions, specific RIB
states (as prescribed by operator), and general network health
(e.g., congestion freeness).

2. Per-switch RPA generation. The controller consumes oper-
ator’s high-level intent for route planning and compiles the
specific RPAs for all target switches.

3. Coordinated RPA deployment across the fleet. Centralium
deploys the new RPAs to target switches in a phased manner
following a safe order that does not disrupt live traffic.

SIGCOMM ’25, September 8–11, 2025, Coimbra, Portugal Yikai Lin et al.

Figure 8: Centralium architecture - Centralized Controller
(Apps, Network State Database, Switch Agent) over dis-
tributed BGP switches

4. Post-deployment network health checks. Centralium mon-
itors the health of the network as deployment happens, and
checks for expected changes to RIB and FIB (e.g., new paths are
selected).

5. Consistency guarantee of desired RPAs in the fleet. The
controller continuously tracks desired RPAs on every switch and
ensures all target switches (particularly those re-provisioned or
newly commissioned) are up-to-date.
We detail the design and implementation of the controller in

Section 5.1, discuss the scalability and reliability of it in Section
5.2, and highlight two challenges that we solved on interoperability
between native and RPA-augmented BGP switches in Section 5.3.

5.1 System Architecture
The Centralium controller is logically divided into three layers:
application, storage - Network State Database (NSDB), and I/O -
Switch Agent (SA), as depicted in Figure 8. Each layer performs the
following functions:
• Application Layer: implements business logic and generates
intended network state in forms of RPA and configurations. We
have onboarded 10+ use cases, including Path Selection, Traffic
Engineering, and Route Filtering.

• Storage Layer: hosts the “superset” of current state (ground truth)
and intended state (intent) of the network

• I/O Layer: continuously collects current network state from
physical switches, and reconciles current state with intended
state by augmenting distributed control-plane
Figure 8 also captures the two continuous data flows in Central-

ium: one that propagates current network state (i.e., ground truth)
northbound, and one that propagates intended state southbound.
Both data flows converge and feed into the storage layer (hence
the “superset”), then propagate further, on demand and often in a
slimmer size, to their consumers.
Services are the units of deployment that carry out data communi-
cations between layers in the controller. One of the key design deci-
sions we made is to enforce service uniformity through a common

template [15]. Most notably, every Centralium service maintains
two contrasting network views: an intended state, which cap-
tures what applications want network state to be, and a current
state, which captures the actual network state (i.e., ground truth)
from the physical switches. Every service consumes or populates
these two states according to its role. For example, the Switch Agent
(1) consumes intended state and writes it to the distributed control-
plane to reconcile current state with intended state, and (2) polls or
streams state and statistics from physical switches to populate the
current state.

This design decision has multiple implications.
• Providing consistency guarantee. One of the biggest challenges
with managing a large-scale network is ensuring consistency
across the fleet - be it policy or configuration. Contrasting net-
work views allow Centralium to easily detect straggler switches,
and provide an eventual consistency guarantee by continuously
reconciling both states.

• Enabling customized rollout plans. Developers can leverage this
visibility to easily implement customized rollout plans in their
applications. For example, one can trivially implement a slow
roll process gated by the percentage of managed devices that
are out-of-sync.

• Significant code reusability. Significant portions of the service
implementation can be reused. For instance, all services share
the same pub/sub modules, health check module, and APIs. As
a result, our command line interface tooling, dashboards, and
external monitoring are compatible with all existing services.

Network State Representation. Current and intended network
states in Centralium share the same tree representation, rooted at a
device map. This allows any node to be identified programmatically
via a path string. Coupled with Thrift [2] encapsulation, all services
share the same set of generic get/set/publish/subscribe APIs that
are data-agnostic. These APIs can be used externally (for RPCs) and
internally: when instantiating the publisher module for example,
services are actually subscribing to their local current or intended
state for any changes to publish. In Section A.3, we share an example
of Centralium’s data model and generic API that supports wildcards.

5.2 Scalability and Reliability
RPA preserves independence of the distributed control plane which
is highly scalable and reliable, and Centralium is designed to take
advantage of it. Compared to a fully centralized SDN solution,
where (1) routing applications demand a high fidelity and fresh
representation of the network to practically replace the distributed
control plane, and (2) forwarding elements depend on the central-
ized controller to populate and maintain their forwarding tables,
Centralium is (1) scalable as it consumes more abstract and less
time-sensitive network state, and (2) simple and reliable as it doesn’t
need to replace the entire distributed control-plane. Here, we briefly
cover some additional scalability and reliability measures.
Sharding. By separating the I/O, storage, and application layers,
the Centralium controller can scale horizontally. Each layer can be
configured with its own number of shards and replicas per shard,
based on its specific requirements. Centralium’s NSDB service can
easily handle thousands of switches in one data center with one

Centralium: A Hybrid Route-Planning Framework for Large-Scale Data Center Network Migrations SIGCOMM ’25, September 8–11, 2025, Coimbra, Portugal

shard and two replicas. In Section 6.1, we show CPU and memory
usage from production deployment. As our data centers continue
to evolve, Centralium’s modular and configurable design allows it
to easily adapt to larger scale.
Service Failures. NSDB is the core of Centralium’s data flows.
Other services publish or subscribe to NSDB. This requires NSDB
to have high availability and lowwrite latency. As a result, we adopt
an eventual consistency model. All publish requests are fanned out
to all NSDB replicas, while read requests are directed to the elected
leader. If a replica fails, read requests get automatically re-routed to
the next elected leader. Other services are also configured withmore
than one replica with auto leader election. All replicas perform read
operations, while only the leader writes to NSDB.
Device Failures. SwitchAgents continuously talk to the distributed
control plane to reconcile current state with intended state. If a
device becomes unreachable, Centralium is capable of correctly
identifying the intended device operational state, for example down
for maintenance, and alerting network operators of unexpected
device unavailability.

5.3 Interoperability Between RPA and Non-RPA
Switches

The asynchronous nature of RPA deployment and activation means
there will be (transient) co-existence of RPA and non-RPA2 switches
during each deployment. We describe two scenarios where this can
lead to routing loops or funneling and how we eliminate such risks
with two RPA design and deployment principles.

5.3.1 BGP Path Dissemination. The criteria by which a given BGP
speaker chooses which routes to advertise to its peers is crucial, as
bad decisions can cause unstable routing states and convergence
problems. For instance, Figure 9 shows a topology with a mix of
RPA-augmented and native BGP speakers; R6 is a BGP speaker with
Path Selection RPAs, while R[1-5] run native BGP with multi-path
enabled. Each peer establishes eBGP with its directly connected
peers, and each switch belongs to a different Autonomous System.
RPAs are configured to enable R6 to load-balance traffic destined to
Prefix D over R2 and R5. R1 receives Prefix D from some upstream
peer and advertises it downstream. R6 selects the two paths it
receives from R2 and R5 for forwarding. At this point, R6 needs
to select one of the two paths for advertisement. If R6 chooses the
path it receives from R2 for advertisement to R5 (left figure), R5 will
end up with two paths with equal AS_Path length. Given that R5
utilizes multi-path, they will both be chosen for forwarding. This
decision will install a persistent routing loop between R5 and R6,
as they become on each others’ forwarding paths.

Given that path selection and advertisement are closely related in
path-vector protocols, replacing the path selection algorithm must
be accompanied by its path advertisement rules to avoid routing
loops. In our implementation, we preserve loop avoidance with
one addition to the standard BGP loop prevention mechanism: RPA
BGP speakers must advertise the path with the least favorable BGP
attributes among the ones it selects for forwarding [31, 38]. For

2In practice it is common to have multiple orthogonal RPAs on a switch. Orthogonal
RPAs influence exclusive sets of prefixes, i.e., a switch can be treated as non-RPA when
reasoning about the behavior of a new RPA, as is in this discussion.

Figure 9: Bad BGP path dissemination causes routing loop
(left); Disseminating highest cost (longest AS_Path) prevents
routing loop (right)

Figure 10: Uncoordinated RPA deployment can lead to tran-
sient funneling

example, an RPA BGP speaker will advertise the path with the
longest AS_Path among the paths it selects for forwarding.

By applying this rule (right figure in Figure 9), R6 will no longer
advertise the path it receives from R2 to R5, as it is not the one with
the highest cost (longest AS_Path) among the paths it selects for
forwarding. Instead, R6 will advertise the path it receives from R5,
and following standard distance-vector split-horizon rule, paths
selected for forwarding cannot be advertised back to the peer from
which they were received. As such, R6 can advertise the path it
receives from R5 only to R2, and a routing loop no longer forms.

5.3.2 RPA Deployment Sequencing. Since RPAs could influence
path selection and in turn path dissemination, the order in which
they are deployed can also be impactful. In Figure 10, we describe
such a scenario where uncoordinated RPA deployment could lead to
transient traffic funneling. In this example, the prefix D is originated
by the backbone and propagated down into the DC. In the initial
stage where all switches are running native BGP, the direct path
between FA and the backbone is preferred over the longer backup
path through DMAG. Suppose we want all DC switches to utilize
both paths (i.e., ignoring AS_Path length), we can deploy a Path
Selection RPA similar to that described in Section 4.4.1 on FSWs,
SSWs, and FAs. Suppose we do not coordinate the deployment of
this RPA, and the new RPA takes effect on FA1 first. FA1 will select
both paths for forwarding, and advertise the longer path through
DMAG to its peers (as described in Section 5.3.1). Because none of

SIGCOMM ’25, September 8–11, 2025, Coimbra, Portugal Yikai Lin et al.

 0.25

 0.5

 0.75

 1

 0 5 10 15 20 25

Max
Average

(a) CPU Utilization (%)

 0.25

 0.5

 0.75

 1

 0 0.5 1 1.5 2 2.5 3

Max
Average

(b) Memory Utilization (GB)
Figure 11: Per-Task Resource Consumption

 0

 0.25

 0.5

 0.75

 1

 1 2 3 4 5 6 7 8 9

FAUU

Figure 12: CDF of RPA Deployment Time (ms)

the other switches has picked up the new RPA yet, they will still
prefer a shorter path. In this case SSWs will prefer the shorter path
from FA2 and all northbound traffic will funnel through FA2 until
FA2 gets the new RPA and advertises the longer path.

To eliminate this risk, we adopt a safe deployment practice based
on knowledge of our DC topology: ordering by layer from bottom
to top (i.e., FSW->SSW->FA). Every layer must receive the new RPA
after all their downstream peers have picked up the new RPA. This
way northbound traffic is distributed over all available paths before,
during, and after the migration.

This principle is summarized as: a new RPA must be deployed
starting from the layer furthest from the source of the route origi-
nation; removal of an existing RPA must start from the layer closest
to the source of the route origination.

6 Evaluation
In this section, we present production data of our hybrid system’s
performance and scalability. We also quantify the significant com-
plexity reduction and time savings RPA enabled in different network
migrations.

6.1 Scalability
We deploy Centralium controller services using our own container-
ization platform Twine [35]. Each micro-service (i.e., job) is typically
run with two identical replicas (i.e., tasks) with leader election for re-
dundancy. In total there are 10-20 Centralium tasks in a data center.

Centralium’smost resource hungry services are NSDB and Switch
Agent. In Figure 11, we show CDFs of CPU and memory usage,
respectively, across all NSDB and Switch Agent tasks. In Figure 11
(a), we see that their single-core-equivalent CPU utilization peaks
out below 25%, with 75% of tasks never exceeding 15%. In Figure 11
(b), we see that their memory consumption peaks out well below
3GB, with 50% of tasks never exceeding 1.5GB.

These low hardware resource consumption numbers reflect how
lightweight and scalable the controller is. Thanks to RPA, it needs
only abstract state, such as network topology, rather than full rout-
ing state, to augment the protocol control plane and prescribe
a priori intent. RPA allows the controller to offload themost computation-
and storage-heavy functions at the more scalable layer: the thou-
sands of physical switches in each DC.

6.2 Performance
RPA generation is significantly less compute-intensive compared
to generating full routing table entries as the computation is kept
in the distributed protocol control plane. Per our measurement, the
controller is able to consistently generate RPAs for a full DC in
under 200 milliseconds.
RPA deployment can happen a priori in an asynchronous fashion
thanks to its abstract design. In few cases such as Traffic Engineer-
ing, a short deployment time is still crucial for a timely routing
re-convergence. In Figure 12, we show a distribution of RPA de-
ployment time (how long it takes to update RPAs in BGP via RPC).
The results are collected for the FAUU layer, as they are physically
the most distant from server racks, where Centralium services are
running. Most RPA updates complete within one millisecond.
RPA evaluation. When an RPA is deployed in BGP, it needs to
be evaluated against all routes in the RIB as their next-hops and
weights might have changed. Once evaluated, the matched RPA
statement is cached so future re-evaluation on the same route is
much faster. In Table 2 we show collected RPA evaluation time for
both cache misses and cache hits.

6.3 Operational Efficiency
Since we deployed RPA in production, our network operators have
shipped over 400 commits (150+/year) to create or update RPAs for
a wide spectrum of routing use cases. For the network migrations
we introduced in Section 3.1, we calculate the number of steps on
the critical path (i.e., steps that are strictly in-order) and the number
of days (based on our average push cadence of three weeks [1])
it takes to complete each migration, with and without (Path Se-
lection) RPA, shown in Table 3. While the specific numbers are
highly dependent on our production environment (e.g., number
of devices, velocity and frequency of software binary and config-
uration updates), the drastic difference between those with and
without RPA reveals its capability in simplifying and protecting
disruptive network operations.

6.4 Network Efficiency
With RPA and a centralized controller, we can fundamentally elimi-
nate the transient forwarding state explosions described in Section
3.4. Figure 13 highlights the effectiveness of our TE solution be-
tween DCN and backbone. Our TE algorithm consumes network
topology and minimizes maximum link utilization to improve ef-
fective network capacity (i.e., the amount of traffic that can be
handled without congestion). As shown in Figure 13, our TE con-
sistently performs close to theoretical optimum (ideal WCMP), and
not-surprisingly better than ECMP. This improvement in effective
capacity enabled up to 45% of maintenance events that would have
otherwise been blocked due to Service Level Agreement violations.

 0

 20

 40

 60

 80

 100

T T + 1hr 8minsE
ff

e
c
ti
v
e

 C
a

p
a

c
it
y
 (

%
)

CTE WCMP
Ideal ECMP
Ideal WCMP

Figure 13: Near-optimal Centralized TE via RPA

Centralium: A Hybrid Route-Planning Framework for Large-Scale Data Center Network Migrations SIGCOMM ’25, September 8–11, 2025, Coimbra, Portugal

Table 2: RPA evaluation time per route (ms)
p50 p95 p99

w/o cache <1 2 4
w/ cache <1 <1 <1

Table 3: Table 1 extended with RPA-enabled reduction and
time savings in different network migrations

#Steps
w/o RPA

#Steps
w RPA

#Days
w/o RPA

#Days
w/ RPA

RPA
LOC

(a) 2 1 42 <1 300-1000
(b) 9 3 189 21 200-300
(c) 3 1 63 7 50-100
(d) 5 3 105 21 100-200
(e) 3 1 <1 <1 <50

7 Operational Experience
In this section, we discuss our production experience operating and
evolving Centralium for four years.

7.1 Dependency and Verification
Centralium is a hybrid system that involves both functional and
configuration dependencies between its centralized and distributed
components. These dependencies, which do not exist in fully dis-
tributed solutions and are far less pronounced in fully centralized
ones, introduce unique and non-trivial challenges in our daily op-
erations. For instance, any evolution of the RPA feature requires
coordinated changes to both the controller and BGP binaries, which
are released through two separate pipelines operating on drastically
different cadences (days versus weeks). In some cases, the typically
agile centralized controller must effectively wait for hundreds of
thousands of switches to be updated to avoid incompatibility issues.
Another example is RPA’s reliance on the underlying base BGP
policies. As described in Section 4.3, operators can use any combi-
nation of BGP attributes to identify routes (destinations) and paths
(PathSignature). This dependency means that RPA relies on these
attributes being correctly specified by the base BGP policy, which
is defined by a different system [24]. Uncoordinated deployment of
RPA and base BGP policies can lead to unexpected routing behavior.

We systematically addressed these challenges through enhanced
pre-deployment verification and unified routing change orchestra-
tion. The former builds upon our existing emulation test suite used
for BGP binary and configuration qualification [1]. We introduced
new integration tests that validate end-to-end routing intent by
emulating a reduced-scale production network incorporating both
BGP and the controller. These tests run whenever there is an update
to the binaries or configuration, preventing incompatible changes
from reaching production. The latter is a new application on top
of the Centralium controller, which orchestrates the rapid and safe
deployment of base BGP policies and RPA across the fleet.

7.2 Debuggability and Usability
While RPA enables migrations that are infeasible with standard
BGP policies (Section 3) and generally simplifies and accelerates mi-
grations (Section 6.3), reasoning about RPA’s behavior—especially
Path Selection RPA—remains non-trivial.
Defining and using RPAs correctly in migrations requires
operators to have a good understanding of both the migration

Figure 14: Major Site EVent (SEV) where incorrect Path Selec-
tion RPA adds to traffic black-holing.

requirements and the implications of different RPA settings. The
explicitness and flexibility of RPA, while powerful, are also prone to
mis-configurations. Figure 14 shows one such example: operators
want to originate a new route (more specific than default route)
from FAs. A Path Selection RPA with BgpNativeMinNextHop was
pre-deployed on SSWs and FSWs to protect this operation from
causing funneling (i.e., a switch should only advertise this route
when sufficient next-hops are available). However, the KeepFib-
WarmIfMnhViolated knob was incorrectly set (i.e., allowing the
new route to be installed in the FIB despite not being advertised),
a nuanced and seemingly harmless setting. During the migration,
an FA that was not production ready (i.e., missing cabling toward
backbone) unexpectedly originated the new route, which did not
propagate beyond SSWs but got installed to their FIBs due to RPA.
As a result, packets reaching SSWs via the default route ended up
taking the more specific new route toward the bad FA and got
black-holed. If the KeepFibWarmIfMnhViolated knob was not set,
packets would have taken the default routes toward all FAs but
the drained one. It remains a challenge and research direction to
capture migration intent using high-level abstractions or language
and auto generate RPAs.
Reasoning About Routing Behavior with RPAs. RPAs are in-
dependently specified and deployed, often in an ad-hoc fashion,
in different parts of the network. This is in contrast to base BGP
policies, which are to a large extent consistent across different data
centers and familiar to operators. The custom intent and scope of
RPAs, often known by a few operators, make it difficult for other
operators to reason about the routing behavior of an RPA-switch
(i.e., which route should be admitted/selected/advertised), let alone
the entire network. We alleviate the single-switch problem by en-
hancing our debugging tooling to (1) show all active RPAs on a
switch, and (2) highlight the active RPA given a particular route.
However, it remains a challenge to reason about a network’s holistic
routing behavior when ad-hoc RPAs are applied.

7.3 BGP Configuration versus RPA
Path selection was the first andmotivating routing function for RPA.
We gradually introduced new functions (i.e., route attribute and
route filter) as we gained confidence with Centralium and discov-
ered more use cases. An important question that keeps coming up
as we evolve RPA over the years is whether a new routing function
should be implemented as BGP configuration or RPA. Our decision
making process boils down to the following key factors (Figure 15):

SIGCOMM ’25, September 8–11, 2025, Coimbra, Portugal Yikai Lin et al.

Figure 15: How to choose between BGP configuration and
RPA for implementing new routing functions.

• Viability of standard BGP configuration. Migrations that require
non-standard path selection (e.g., Section 3.2) are exampleswhere
BGP configuration is not viable.

• Dependency on network dynamics. BGP configuration is better
suited for static functions that are agnostic to real-time network
topology or traffic distribution. RPA, on the other hand, can
leverage the holistic view of the centralized controller for more
dynamic functions, such as traffic engineering.

• Expressivity, modularity, and agility. Compared to BGP con-
figuration, RPA is more explicit, more modular (i.e., each RPA
component is specified and deployed independently), and can
be deployed much more timely via Centralium. These qualities
also play a huge role in our decision of how to implement a new
routing function.

7.4 Applicability to Other Networks
Applying to Small/Medium Networks. A key aspect of Central-
ium’s design and deployment is ownership of the BGP daemon and
the ability to modify it. While this may be a prerequisite for direct
applicability, the high-level route plan can still be implemented in-
directly by using an external compiler to translate it into low-level
BGP primitives. However, this indirect approach is more difficult
to reason about and can increase the risk of errors. On the other
hand, BGP extensions remain an active area of standardization. We
believe the concept of RPA could be integrated into open-source
BGP daemons and potentially advanced through standardization
efforts to benefit the broader community.
Applying to Other Networks at Meta.We are actively exploring
the use cases of Centralium at Meta beyond data centers. We have
identified routing requirements for AI backend networks [9], where
the network evolves at an even faster pace and multiple versions of
topology coexist. Centralium can also provide finer-grained rout-
ing control considering training job placement. Additionally, we
have been using Centralium to control how traffic flows into the
backbone network, facilitating backbone network migrations.
Applying toOther Routing Protocols. The design and implemen-
tation of RPA are heavily influenced by Meta’s BGP deployment,
where each node lacks a holistic view of the network. However, we
believe the core concept of RPA—achieving hybrid routing control
through an externally programmable component within the proto-
col control plane—can be extended to other routing protocols such
as OSPF and Open/R.

8 Related Work
Software Defined Networking (SDN) is a groundbreaking in-
novation in the networking community in the past decade [20]. It

not only stimulates new research [3, 10, 32] but also lands in large-
scale deployed systems [8, 12, 23, 29]. At Meta, although we have
chosen the traditional BGP due to our own requirements and chal-
lenges [1], we continue exploring a hybrid approach for the benefits
of both sides [24, 26]. The closest to ours are Google’s Jupiter [29]
and Orion [8] which are data center SDN solutions that directly
instrument the data plane. While our choice of BGP provides fault
tolerance, our work addresses its unique transient challenges.
Intent-Based Routing. Expressing routing objectives in a more
human-readable language has drawn significant interests in recent
years. Jinjing [36] introduces LAI to express ACL update synthe-
sis. Propane [3] introduces RIR to express constraints on policy.
Propane/AT [4] and SyNet [7] use their own Domain Specific Lan-
guage or existing techniques to express intents. These efforts focus
more on policy specification and synthesis, while Centralium em-
phasizes how to use policies to control routing in a centralized
system. Centralium leverages our high-level routing intent plat-
form [24] and injects policy at the RIB level.
Network Management. In the broader network configuration
space, network management systems such as Robotron [33] and
MALT [21] use high-level intents to low-level device configurations
withminimal human intervention. Our work focuses on higher level
routing intent which can be translated to Robotron-like systems.
Dynamic Network Updates. There have been several efforts on
dynamic network updates in the SDN context [13, 17–19]. zUp-
date [16] and Snowcap [27] determine a transition plan from one
configuration to another. CrystalNet provides an emulation plat-
form to test changes before production. They address different
challenges avoiding packet drops due to inconsistent rules [18].

9 Conclusion
Centralium tackles route planning problems for complex DCN
migrations. It enhances BGP by introducing centralized control
through Route Planning Abstractions (RPAs), which explicitly and
directly prescribe intent. This hybrid approach combines central-
ized route planning with distributed route enforcement, addressing
the limitations of traditional distributed routing protocols and the
challenges associated with full centralization. Our production ex-
perience demonstrates the effectiveness of this approach in over-
coming the limits of traditional BGP. The integration of centralized
and distributed routing remains an active area of research, driven
by the evolving demands of modern, large-scale data centers.
Ethics: This work does not raise any ethical issues.

Acknowledgments
This work is a close collaboration within Meta’s Network Infras-
tructure team, especially between Network Routing, Data-center
Network Engineering, FBOSS, WAN Systems, and Core Networking
teams. We would like to thank Omar Baldonado, our shepherd Peter
Steenkiste, and the anonymous reviewers for their constructive and
valuable feedback on earlier drafts of this publication.

References
[1] Anubhavnidhi Abhashkumar, Kausik Subramanian, Alexey Andreyev, Hyojeong

Kim, Nanda Kishore Salem, Jingyi Yang, Petr Lapukhov, Aditya Akella, and
Hongyi Zeng. 2021. Running BGP in Data Centers at Scale. In 18th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 21). USENIX

Centralium: A Hybrid Route-Planning Framework for Large-Scale Data Center Network Migrations SIGCOMM ’25, September 8–11, 2025, Coimbra, Portugal

Association, 65–81. https://www.usenix.org/conference/nsdi21/presentation/
abhashkumar

[2] Apache. [n. d.]. Thrift. https://thrift.apache.org. Accessed: 2024-01-09.
[3] Ryan Beckett, Ratul Mahajan, Todd Millstein, Jitendra Padhye, and David Walker.

2016. Don’t mind the gap: Bridging network-wide objectives and device-level
configurations. In Proceedings of the 2016 ACM SIGCOMM Conference. 328–341.

[4] Ryan Beckett, Ratul Mahajan, Todd Millstein, Jitendra Padhye, and David Walker.
2017. Network Configuration Synthesis with Abstract Topologies. SIGPLAN Not.
52, 6 (June 2017), 437–451. https://doi.org/10.1145/3140587.3062367

[5] Marcel Caria, Admela Jukan, and Marco Hoffmann. 2016. SDN partitioning: A
centralized control plane for distributed routing protocols. IEEE Transactions on
Network and Service Management 13, 3 (2016), 381–393.

[6] Marek Denis, Yuanjun Yao, Ashley Hatch, Qin Zhang, Chiun Lin Lim, Shuqiang
Zhang, Kyle Sugrue, Henry Kwok, Mikel Jimenez Fernandez, Petr Lapukhov,
et al. 2023. Ebb: Reliable and evolvable express backbone network in meta. In
Proceedings of the ACM SIGCOMM 2023 Conference. 346–359.

[7] Ahmed El-Hassany, Petar Tsankov, Laurent Vanbever, and Martin Vechev. 2017.
Network-wide configuration synthesis. In International Conference on Computer
Aided Verification. Springer, 261–281.

[8] Andrew D. Ferguson, Steve Gribble, Chi-Yao Hong, Charles Killian, Waqar
Mohsin, Henrik Muehe, Joon Ong, Leon Poutievski, Arjun Singh, Lorenzo Vi-
cisano, Richard Alimi, Shawn Shuoshuo Chen, Mike Conley, Subhasree Mandal,
Karthik Nagaraj, Kondapa Naidu Bollineni, Amr Sabaa, Shidong Zhang, Min
Zhu, and Amin Vahdat. 2021. Orion: Google’s Software-Defined Networking
Control Plane. In 18th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 21). USENIX Association, 83–98. https://www.usenix.org/
conference/nsdi21/presentation/ferguson

[9] Adithya Gangidi, Rui Miao, Shengbao Zheng, Sai Jayesh Bondu, Guilherme Goes,
Hany Morsy, Rohit Puri, Mohammad Riftadi, Ashmitha Jeevaraj Shetty, Jingyi
Yang, et al. 2024. Rdma over ethernet for distributed training at meta scale. In
Proceedings of the ACM SIGCOMM 2024 Conference. 57–70.

[10] Ramesh Govindan, Ina Minei, Mahesh Kallahalla, Bikash Koley, and Amin Vahdat.
2016. Evolve or Die: High-Availability Design Principles Drawn from Googles
Network Infrastructure. In Proceedings of the 2016 ACM SIGCOMM Conference
(Florianopolis, Brazil) (SIGCOMM ’16). Association for Computing Machinery,
New York, NY, USA, 58–72. https://doi.org/10.1145/2934872.2934891

[11] Saif Hasan, Petr Lapukhov, Anuj Madan, and Omar Baldonado. 2017. Open/R:
Open Routing for Modern Networks. https://engineering.fb.com/2017/11/15/
connectivity/open-r-open-routing-for-modern-networks/. Accessed on Jan 26,
2024.

[12] Chi-Yao Hong, Srikanth Kandula, Ratul Mahajan, Ming Zhang, Vijay Gill, Mohan
Nanduri, and Roger Wattenhofer. 2013. Achieving high utilization with software-
driven WAN. In Proceedings of the ACM SIGCOMM 2013 Conference on SIGCOMM.
15–26.

[13] Xin Jin, Hongqiang Harry Liu, Rohan Gandhi, Srikanth Kandula, Ratul Mahajan,
Ming Zhang, Jennifer Rexford, and RogerWattenhofer. 2014. Dynamic scheduling
of network updates. ACM SIGCOMM Computer Communication Review 44, 4
(2014), 539–550.

[14] Sajad Khorsandroo, Adrián Gallego Sánchez, Ali Saman Tosun, José M Arco, and
Roberto Doriguzzi-Corin. 2021. Hybrid SDN evolution: A comprehensive survey
of the state-of-the-art. Computer Networks 192 (2021), 107981.

[15] Yikai Lin. 2020. Enabling and Improving Centralized Control in Network and
Cyber-Physical Systems: An Application-Driven Approach. Ph. D. Dissertation.
University of Michigan, Ann Arbor.

[16] Hongqiang Harry Liu, Xin Wu, Ming Zhang, Lihua Yuan, Roger Wattenhofer,
and David Maltz. 2013. zUpdate: Updating data center networks with zero loss.
In Proceedings of the ACM SIGCOMM 2013 Conference on SIGCOMM. 411–422.

[17] Hongqiang Harry Liu, Yibo Zhu, Jitu Padhye, Jiaxin Cao, Sri Tallapragada, Nuno P.
Lopes, Andrey Rybalchenko, Guohan Lu, and Lihua Yuan. 2017. CrystalNet: Faith-
fully Emulating Large Production Networks. In Proceedings of the 26th Symposium
on Operating Systems Principles (Shanghai, China) (SOSP ’17). Association for
Computing Machinery, New York, NY, USA, 599–613.

[18] Ratul Mahajan and Roger Wattenhofer. 2013. On consistent updates in software
defined networks. In Proceedings of the Twelfth ACM Workshop on Hot Topics in
Networks. 1–7.

[19] Jedidiah McClurg, Hossein Hojjat, Pavol Černỳ, and Nate Foster. 2015. Efficient
synthesis of network updates. Acm Sigplan Notices 50, 6 (2015), 196–207.

[20] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Pe-
terson, Jennifer Rexford, Scott Shenker, and Jonathan Turner. 2008. OpenFlow:
enabling innovation in campus networks. ACM SIGCOMM computer communica-
tion review 38, 2 (2008), 69–74.

[21] Jeffrey C. Mogul, Drago Goricanec, Martin Pool, Anees Shaikh, Douglas Turk,
Bikash Koley, and Xiaoxue Zhao. 2020. Experiences with Modeling Network
Topologies at Multiple Levels of Abstraction. In 17th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 20). USENIX Association, Santa
Clara, CA, 403–418. https://www.usenix.org/conference/nsdi20/presentation/
mogul

[22] Prodosh Mohapatra and Rex Fernando. 2018. BGP Link Bandwidth Extended Com-
munity. Internet-Draft draft-ietf-idr-link-bandwidth-07. Internet Engineering
Task Force. https://datatracker.ietf.org/doc/draft-ietf-idr-link-bandwidth/07/
Work in Progress.

[23] Leon Poutievski, Omid Mashayekhi, Joon Ong, Arjun Singh, Mukarram Tariq,
Rui Wang, Jianan Zhang, Virginia Beauregard, Patrick Conner, Steve Gribble,
Rishi Kapoor, Stephen Kratzer, Nanfang Li, Hong Liu, Karthik Nagaraj, Jason Orn-
stein, Samir Sawhney, Ryohei Urata, Lorenzo Vicisano, Kevin Yasumura, Shidong
Zhang, Junlan Zhou, and Amin Vahdat. 2022. Jupiter Evolving: Transforming
Google’s Datacenter Network via Optical Circuit Switches and Software-Defined
Networking. In Proceedings of ACM SIGCOMM 2022.

[24] Sivaramakrishnan Ramanathan, Ying Zhang, Mohab Gawish, Yogesh Mundada,
Zhaodong Wang, Sangki Yun, Eric Lippert, Walid Taha, Minlan Yu, and Jelena
Mirkovic. 2023. Practical Intent-driven Routing Configuration Synthesis. In 20th
USENIX Symposium on Networked Systems Design and Implementation (NSDI 23).
USENIX Association, Boston, MA, 629–644. https://www.usenix.org/conference/
nsdi23/presentation/ramanathan

[25] Yakov Rekhter, Susan Hares, and Tony Li. 2006. A Border Gateway Protocol 4
(BGP-4). RFC 4271. https://doi.org/10.17487/RFC4271

[26] Brandon Schlinker, Hyojeong Kim, Timothy Cui, Ethan Katz-Bassett, Harsha V.
Madhyastha, Italo Cunha, James Quinn, Saif Hasan, Petr Lapukhov, and Hongyi
Zeng. 2017. Engineering Egress with Edge Fabric: Steering Oceans of Content to
the World. In Proceedings of the Conference of the ACM Special Interest Group on
Data Communication (Los Angeles, CA, USA) (SIGCOMM ’17). Association for
Computing Machinery, New York, NY, USA, 418–431.

[27] Tibor Schneider, Rüdiger Birkner, and Laurent Vanbever. 2021. Snowcap: syn-
thesizing network-wide configuration updates. In Proceedings of the 2021 ACM
SIGCOMM 2021 Conference. 33–49.

[28] Vipul Shah. [n. d.]. BGP In-place Adjacency Replace (IAR). https://www.arista.
com/en/support/toi/eos-4-23-2f/14449-bgp-in-place-adjacency-replace-iar. Ac-
cessed: 2020-03-13.

[29] Arjun Singh, Joon Ong, Amit Agarwal, Glen Anderson, Ashby Armistead, Roy
Bannon, Seb Boving, Gaurav Desai, Bob Felderman, Paulie Germano, et al. 2015.
Jupiter rising: A decade of clos topologies and centralized control in google’s
datacenter network. ACM SIGCOMM computer communication review 45, 4 (2015),
183–197.

[30] Yash Sinha, K Haribabu, et al. 2017. A survey: Hybrid sdn. Journal of Network
and Computer Applications 100 (2017), 35–55.

[31] J.J. Garcia-Luna-Aceves Srinivas Vutukury. 1999. A Simple Approximation to
Minimum-Delay Routing. In ACM SIGCOMM Computer Communication Review,
Volume 29, Issue 4. 227–238.

[32] Peng Sun, Ratul Mahajan, Jennifer Rexford, Lihua Yuan, Ming Zhang, and Ahsan
Arefin. 2014. A network-state management service. In Proceedings of the 2014
ACM Conference on SIGCOMM. 563–574.

[33] Yu-Wei Eric Sung, Xiaozheng Tie, Starsky HY Wong, and Hongyi Zeng. 2016.
Robotron: Top-down network management at facebook scale. In Proceedings of
the 2016 ACM SIGCOMM Conference. 426–439.

[34] Himanshu Tambakuwala and Sanoop Ranjan. [n. d.]. BGP Minimum ECMP.
https://community.juniper.net/blogs/himanshu-tambakuwala/2024/07/25/bgp-
minimum-ecmp. Accessed: 2025-01-16.

[35] Chunqiang Tang, Kenny Yu, Kaushik Veeraraghavan, Jonathan Kaldor, Scott
Michelson, Thawan Kooburat, Aravind Anbudurai, Matthew Clark, Kabir Gogia,
Long Cheng, et al. 2020. Twine: A unified cluster management system for shared
infrastructure. In 14th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 20). 787–803.

[36] Bingchuan Tian, Xinyi Zhang, Ennan Zhai, Hongqiang Harry Liu, Qiaobo Ye,
Chunsheng Wang, Xin Wu, Zhiming Ji, Yihong Sang, Ming Zhang, Da Yu, Chen
Tian, Haitao Zheng, and Ben Y. Zhao. 2019. Safely and automatically updating
in-network ACL configurations with intent language. In Proceedings of the ACM
Special Interest Group on Data Communication (Beijing, China) (SIGCOMM ’19).
Association for Computing Machinery, New York, NY, USA, 214–226. https:
//doi.org/10.1145/3341302.3342088

[37] Shih-Hao Tseng, Ao Tang, Gagan L Choudhury, and Simon Tse. 2019. Rout-
ing stability in hybrid software-defined networks. IEEE/ACM Transactions On
Networking 27, 2 (2019), 790–804.

[38] Iljitsch Van Beijnum, Jon Crowcroft, Francisco Valera, and Marcelo Bagnulo. 2009.
Loop-freeness in multipath BGP through propagating the longest path. In 2009
IEEE International Conference on Communications Workshops. IEEE, 1–6.

[39] Yihao Zhao, Xiaoxiang Zhang, Hang Zhu, Ying Zhang, Zhaodong Wang, Yuan-
dong Tian, Alex Nikulkov, Joao Ferreira, Xuanzhe Liu, and Xin Jin. 2023. Klotski:
Efficient and Safe Network Migration of Large Production Datacenters. In Pro-
ceedings of the ACM SIGCOMM 2023 Conference (New York, NY, USA) (ACM
SIGCOMM ’23). Association for Computing Machinery, New York, NY, USA,
783–797.

A Appendix
Appendices are supportingmaterial that has not been peer-reviewed.

https://www.usenix.org/conference/nsdi21/presentation/abhashkumar
https://www.usenix.org/conference/nsdi21/presentation/abhashkumar
https://thrift.apache.org
https://doi.org/10.1145/3140587.3062367
https://www.usenix.org/conference/nsdi21/presentation/ferguson
https://www.usenix.org/conference/nsdi21/presentation/ferguson
https://doi.org/10.1145/2934872.2934891
https://engineering.fb.com/2017/11/15/connectivity/open-r-open-routing-for-modern-networks/
https://engineering.fb.com/2017/11/15/connectivity/open-r-open-routing-for-modern-networks/
https://www.usenix.org/conference/nsdi20/presentation/mogul
https://www.usenix.org/conference/nsdi20/presentation/mogul
https://datatracker.ietf.org/doc/draft-ietf-idr-link-bandwidth/07/
https://www.usenix.org/conference/nsdi23/presentation/ramanathan
https://www.usenix.org/conference/nsdi23/presentation/ramanathan
https://doi.org/10.17487/RFC4271
https://www.arista.com/en/support/toi/eos-4-23-2f/14449-bgp-in-place-adjacency-replace-iar
https://www.arista.com/en/support/toi/eos-4-23-2f/14449-bgp-in-place-adjacency-replace-iar
https://doi.org/10.1145/3341302.3342088
https://doi.org/10.1145/3341302.3342088

SIGCOMM ’25, September 8–11, 2025, Coimbra, Portugal Yikai Lin et al.

A.1 Data Center Topology
Figure 1 illustrates Meta’s DC topology. All equipment within a
given rack is connected via a single Rack Switch (RSW). Each RSW
connects to a group of Fabric Switches (FSWs), each of which con-
nects to a group of Spine Switches (SSWs). These three layers com-
prise a fabric network. Within the fabric network, switches map
to logical groupings, such as pod and plane. A pod is the smallest
unit of deployment in a DC consisting of a group of interconnected
FSWs and RSWs. A plane consists of a group of interconnected
SSWs and FSWs.

Multiple fabrics are aggregated by a Fabric Aggregate (FA) layer.
This layer plays a pivotal role in managing traffic flow across DCs,
i.e., east/west traffic, as well as traffic ingress to and egress fromDCs.
The FA architecture consists of a group of switches. Fabric Aggre-
gate Downlink Units (FADUs) face down, toward DCs. Fabric Aggre-
gate Uplink Units (FAUUs) face up toward the wide-area network.
FAUUs connect to the backbone, the network that orchestrates the
global interconnection of data centers [6]. FAUUs and FADUs are
grouped into grids. Every SSW connects to one FADU in every grid.

A.2 Data Center Routing
Since our previous work [1], we evolved our data center routing
design significantly. First, we continue to use Border Gateway Proto-
col (BGP) to route production prefixes, leveraging BGP’s rich policy
control at every hop. Production prefixes carry high-volume appli-
cation traffic and must have optimal routing with sufficient capacity
at every hop in all partial failure scenarios. Second, we employ an
in-house link-state protocol, Open/R[11], to route infrastructure
prefixes, leveraging Open/R’s link-state flooding and SPF-based
routing paradigm. Infrastructure prefixes facilitate network device
connectivity, management, and diagnostics. They carry relatively
low traffic. In the event of a device or link failure, their reachabil-
ity can be supported by non-shortest paths. Third, both BGP and
Open/R run concurrently on every layer of the DC network. Fourth,
Centralium incrementally takes onmore routing functions provided
by BGP. Centrailum’s intended end state is the authority over path
selection, traffic engineering, and traffic distribution optimization.

The new DC routing design reduces risk associated with cen-
tralized control. Such control can be exercised with minimal risk
of circular dependencies or losing reachability to network devices,
as it controls only BGP and accesses network devices via routes
provided by Open/R. In a sense, Open/R acts as a resilient out of
band (OoB) management network with in-band network properties,
offering diverse accessibility paths between Centralium and each
DC network node.

Within Meta’s network infrastructure, BGP and Open/R policies
are configured to govern the sharing of routing information and
to exercise control over traffic flow objectives. These objectives
encompass aspects like traffic load-balancing, redundancy, and
path preference. The configuration of BGP and Open/R policies is
maintained homogeneously across network tiers [24].

A.3 Centralium Data Model and APIs
Network State Representation:
1 "devices": {
2 "device -1": {
3 "basic": {
4 "name": "device -1",
5 "role": "fauu",
6 ...
7 },
8 "bgp": {
9 "route_planning_abstraction": {
10 "path_selection": {...},
11 "route_attribute": {...},
12 "route_filter": {...}
13 }
14 },
15 ...
16 }

Generic Path-Based API:
1 binary GetState(
2 GetStateRequest {
3 isIntended: false , # current state
4 paths: [
5 {"raw": "devices"},
6 {"any": true}, # wildcarding
7 {"raw": "bgp"},
8 {"raw": "route_planning_abstraction"},
9 {"raw": "path_selection"},
10 {"raw": "statements"},
11 {"regex": "vip.*"}, # regex
12 ...
13]
14 }
15)

	Abstract
	1 Introduction
	2 Background
	3 Challenges in DCN Migration
	3.1 DCN Migrations
	3.2 Scenario 1: First Router Problem in Topology Expansion
	3.3 Scenario 2: Last Router Problem in Decommission
	3.4 Scenario 3: Forwarding State Exhaustion by Intermediate Migration States

	4 Route Planning Abstraction (RPA)
	4.1 Design Choices
	4.2 RPA Augmented BGP Workflow
	4.3 RPA Primitives Design
	4.4 Case Studies

	5 System Implementation
	5.1 System Architecture
	5.2 Scalability and Reliability
	5.3 Interoperability Between RPA and Non-RPA Switches

	6 Evaluation
	6.1 Scalability
	6.2 Performance
	6.3 Operational Efficiency
	6.4 Network Efficiency

	7 Operational Experience
	7.1 Dependency and Verification
	7.2 Debuggability and Usability
	7.3 BGP Configuration versus RPA
	7.4 Applicability to Other Networks

	8 Related Work
	9 Conclusion
	Acknowledgments
	References
	A Appendix
	A.1 Data Center Topology
	A.2 Data Center Routing
	A.3 Centralium Data Model and APIs

