
Pausing and Resuming Network Flows using
Programmable Buffers

Yikai Lin
University of Michigan

Ulaş C. Kozat
Huawei R&D, USA

John Kaippallimalil
Huawei R&D, USA

Mehrdad Moradi
University of Michigan

Anthony C.K. Soong
Huawei R&D, USA

Z. Morley Mao
University of Michigan

ABSTRACT
The emerging 5G networks and applications require network
traffic to be buffered at different points in awide area network
with different policies based on user mobility, usage patterns,
device and application types. Existing Software Defined Net-
work (SDN) solutions fail to provide sufficient decoupling
between the data-plane and control-plane to enable efficient
control of where, when, and how a network flow is buffered
without causing excessive control-plane traffic. Alternative
approaches either cater to application-specific use cases or
follow completely new paradigms that are not compatible
with 5G evolution. In this paper, we present (1) a new pro-
gramming abstraction for network buffering, (2) a new set of
northbound APIs for network applications to pause and re-
sume traffic flows in the network, (3) a new set of southbound
APIs to scalably control where, when, and how a network
flow is buffered, and (4) evaluations based on the prototype
implementation of data-plane and control-plane functions.
Our evaluations indicate significant performance and scal-
ability potentials, and show near-optimal results in mobility-
management and connectionless communication use cases.

CCS CONCEPTS
•Networks→Programming interfaces;Programmable
networks; Mobile networks; Network management;

KEYWORDS
Software Defined Network, Network Function Virtualization,
Mobility, Buffering, 5G, Cellular Network

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
SOSR ’18, March 28–29, 2018, Los Angeles, CA, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5664-0/18/03. . . $15.00
https://doi.org/10.1145/3185467.3185473

1 INTRODUCTION
As mobile networks transition toward 5G, there is an op-
portunity to fundamentally re-architect the core network
to achieve scalability, flexibility and service agility [2, 19].
These features become especially crucial as more types of de-
vices (IoT, Virtual Reality, Autonomous Vehicles) are joining
5G. Network Function Virtualization (NFV) and Software De-
fined Networking (SDN) are considered as the key enablers
of these features [3]. NFV replaces hardware boxes with soft-
ware instances running in VMs or containers, and allows
multiple instances (of one or more NFs) to share the same
commodity servers. This simplifies the development, deploy-
ment, and management of NFs, and significantly reduces the
costs. SDN further simplifies the deployment and manage-
ment of network services by programmatically meshing up
network functions together. In SDN paradigm, logically cen-
tralized control applications programmatically change the
forwarding and packet processing behavior of distributed
data-plane nodes with frameworks like OpenFlow [32] and
P4 [13]. These frameworks have significantly pushed the
boundary of network programming. However, little advance-
ment is made on a critical behavior of cellular networks: net-
work buffering. Neither OpenFlow nor P4 has control over
where, when and how a network flow is buffered inside the
network, except for sending the flows to the controller [24].

Why is network buffering critical? Many existing services
in cellular networks such as Mobility Management and Pag-
ing rely on network buffering to guarantee loss-free and
order-preserving delivery during user mobility. While these
services will remain fundamental in 5G networks, they will
not be considered as fixed functions [46]. Instead, they will
be customized for different network slices [36]. Furthermore,
new set of mobile edge services that benefit from in network
caching and storage should be supported when and where
needed. As a brute-force approach, these services can be de-
ployed as VNFs in central offices. However, with a proper set
of abstractions for flow buffering and a set of APIs to manage
flow buffering behavior, we can build a network buffering
service that can be consumed easily, efficiently, and flexibly
by many network services.

https://doi.org/10.1145/3185467.3185473

SOSR ’18, March 28–29, 2018, Los Angeles, CA, USA Yikai Lin et al.

Towards this end, we propose Programmable Buffer (PB),
a new programming abstraction for managing where, when
and how a network flow is buffered within the network. PB
incorporates the new programming abstractions into existing
SDN programming models and provides both northbound
and southbound APIs to efficiently manage flow buffering
behaviors on software switches. A PB enabled switch, Pro-
grammable Buffer Switch (as will be described in Section 3.2),
exposes buffering operations to the control-plane via a set
of low-level (southbound) APIs. A PB service running on the
SDN controller wraps up these APIs into high-level (north-
bound) APIs for control applications, greatly simplifying the
process of buffer-based programming.

PB’s low-level APIs manage the available memory on soft-
ware switches for programmable buffers, and configure
them as on-switch traffic sources and sinks. When combined
with SDN’s existing fine-grained flow control, applications
can easily pause flows in the network, store packets for an
arbitrary duration and resume/play back flows later towards
any path as dictated. These functions allow PB to easily sup-
port existing services like mobility management, and enable
new applications like fast mobility1 management and con-
nectionless communications in the 5G era.

In this paper, we make the following contributions:
• We propose PB, a novel SDN-NFV approach for manag-
ing flow buffering in a network. PB abstractions allow
core network services to be further decoupled (by keeping
buffering functionality on the data-plane), which helps
enable a scalable high-performance 5G network.

• We design a set of low-level southbound APIs that support
atomic buffer operations and are composable for high-level
APIs. The low-level APIs offer precision and efficiency,
while high-level APIs allow applications to easily express
where and how traffic flow should be paused and resumed.

• We build a proof-of-concept prototype of PB using open-
source software, and develop three applications using PB.
In our benchmarks, PB shows significant performance
and scalability potentials, meeting or exceeding 5G QoS
standards. In simulations, PB delivers near-optimal results
and show huge improvement over control-plane buffering
solution. For example, PB-enabled mobility management
delivers near-optimal (within 5% of the theoretical max-
imum throughput) results which more than double that
of control-plane buffering; the decoupling between con-
trol and buffering allows PB to consistently outperform

1Mobility at much higher frequency, sometimes with longer handoff dura-
tion than interval, as expected in 5G networks. Will be described in detail
in Section 5.1.

control-plane buffering in the connectionless communi-
cation use case by several orders of magnitude regardless
of traffic volume.

2 WHY PROGRAMMABLE BUFFER?
We first draw a clear distinction between Programmable
Buffers and legacy switch buffers (queues). Switch buffers
(queues) are part of the switch processing pipeline. They
temporarily hold packets while packet schedulers decide in
what order and when to serve these packets. They absorb
arrival rate fluctuations to prevent packet loss, or enforce
QoS metrics. Programmable Buffer is a storing unit along-
side the switch processing pipeline. PBs serve as on-switch
traffic sinks (in the case of "pausing") or sources (in the case
of "resuming") when attached to the pipeline and they can
hold the packets indefinitely unless otherwise instructed by
the control-plane.
In many scenarios, packets are required to be buffered

until a certain event happens (e.g. mobile device reconnects
to a new base station). Such events are typically not switch-
local and require a global view to manage multiple buffers
in different parts of the network in a coordinated manner.
Moving toward 5G and embracing different types of mo-

bile devices and applications, we will see an increasing de-
mand for buffering support. As SDN and NFV become the
building blocks and key enablers for next-generation net-
works, we can leverage them to make network buffering
programmable and provided as a general function for all
applications just like forwarding and packet processing. This
also echos with the vision of network slicing [36] which
partitions network architectures into virtual elements with
different requirements. Here we list three motivating exam-
ples to show that the requirement for network buffering
varies depending on the application and device types. There-
fore, catering for application-specific use cases will not fit
all and will end up reinventing wheels.

2.1 Network Buffering Examples
MobilityManagement. In cellular networks, handling user
mobility is a core service. Since packet loss and out-of-order
delivery have a severe performance impact on TCP connec-
tions, the network needs to buffer (pause) users’ downlink
traffic before they disconnect from the base station, and re-
sume it after they reconnect to another base station. End
host applications are agnostic of such mobility or buffering
behaviors, which are managed by the network control plane.

Network Function FlowMigration.With NFV, scaling
a service simply requires the network to instantiate new NF
instances. However, as pointed out in [24], many stateful
network functions (e.g. Bro IDS) require current states of the
old NF instance to be transferred to the new instance, which
must be completed prior to flow migration for correctness.

Pausing and Resuming Network Flows using Programmable Buffers SOSR ’18, March 28–29, 2018, Los Angeles, CA, USA

This requires the network to actively buffer the live traffic
while state transfer is happening.

Connectionless Communication. As 5G approaches,
new communication paradigms such as device-to-device
communications need to be supported efficiently. Such com-
munications should work even when one end is offline or
in mobility. Connectionless communication accommodates
such special requirements by allowing the network to serve
as a surrogate receiver, freeing the sender from buffering the
data. This is even more crucial when the sender is battery
constrained (e.g. a sensor) and the receiver (e.g. data analysis
server) only goes online periodically. In this case, buffering
requests originate from end hosts instead of the network.

2.2 Related Work
Switch buffer management is a well-studied topic dating
back to the 70s [27]. Most previous works focused on de-
signing packet scheduling algorithms or switch buffer archi-
tectures for specific use cases. More recently, to address the
lack of programmability of packet scheduling, Sivaraman et
al. [42] proposed a push-in first-out (PIFO) queue as a basic
abstraction for programmable scheduler; Kogan et al. [31]
proposed a framework for constructing custom switch buffer
architecture; HotCocoa [20] implemented entire congestion
control algorithms in programmable NICs. As explained
above, Programmable Buffer and switch queue have different
purposes. Switch queues are not designed to hold packets
indefinitely and packet schedulers have no visibility beyond
switch-local events. In addition, these solutions require new
scheduler/architecture/algorithm to be recompiled which
changes the switch processing pipeline.

On-switch storage. NetCache [29] proposed to use hard-
ware programmable switches as key-value caches for load
balancing storage server requests. In particular, the authors
utilize the register arrays implemented with on-chip memory
to store small values. Such hardware switches have limit-
ed/fixed number of registers and register size (128B) that
are not well suited for PB which dynamically manages the
number and sizes of buffers to store packets. In this work,
reading and writing the cache are triggered by certain pack-
ets arriving at the switch, whereas PB allows the controller
to programmatically turn a buffer into traffic source or sink.

Network storage. Plank et al. [38] presented the Internet
Backplane Protocol for network applications to actively uti-
lize storage as part of the network fabric. This work differs
from PB in many ways. Firstly, it is a distributed approach
while PB exercises SDN’s centralized model. Secondly, it
treats network storage as a passive function triggered only by
end-hosts, which cannot address scenarios where buffering
necessity originates from within network (e.g. user mobility).
Thirdly, end hosts lack the global view to optimally decide
where to store. However, this paper does share the same

vision with PB of the importance of in-network buffering for
many applications.

Packet buffering in SDN.Without data-plane buffering
support, SDN applications have to rely on the controller to
temporarily store the packets [24], thus placing it on the crit-
ical path of network flows. This could incur high per packet
latency [23], and occupy limited controller resources (mem-
ory, CPU and control channel bandwidth) [44], which suffers
on scalability. PB addresses this problem by decoupling the
control from buffering and keeping latency-sensitive oper-
ations on the data-plane: the controller is not on the critical
path of network flows and is only involved to initiate "pause"
or "resume" instructions (which, as shown in Section 3.4, are
often accomplished with only one control message).

Cellular SDN/NFV network architectures. Recently,
there has a been substantial focus from academia and indus-
try on realizing the network architecture of 5G cellular core
networks based on the SDN/NFV concept [8, 21, 34, 39, 41].
In particular, SoftCell [28] departs from the centralized policy
enforcement in the core network by directing users’ traffic
through distributed middleboxes. SoftMoW [33, 35] builds
a scalable control plane using the hierarchy technique to
enable global network optimization. These SDN/NFV archi-
tectures are complementary to PB in terms of scaling the
control-plane and handling failures.

3 PB FRAMEWORK
3.1 Overview
PB framework extends from the typical SDN-NFV paradigm
with a Buffer Engine on each data-plane node in coordina-
tion with a Buffer Service on the control-plane (See Figure 1).
In addition to the default southbound APIs (interface 4 in
Figure 1) such as OpenFlow [32] and P4 [13], Buffer Ser-
vice communicates with Buffer Engine via PB’s southbound
APIs (interface 3). These low-level APIs are wrapped up by
Buffer Service as higher level APIs for upper layer control
applications (interface 1). Together with the built-in flow
management capabilities (interface 2), a control application
can create buffers when and where desired and direct traffic
flows into/out of buffers.
Inline with the 5G vision, elements of the PB framework

can be mapped to different functions in the 5G architec-
ture: programmable buffer as User Plane Function (UPF), and
Buffer Service as Session Management Function [16].

Next, we will break down the PB framework and describe
the design of each in details. We start from the data-plane
switch abstraction, Programmable Buffer Switch (Sec. 3.2).
On the switch are the two programming abstractions, pro-
grammable buffer and virtual port. Then we introduce the
southbound buffer APIs (Sec. 3.3) that are used to orchestrate
and monitor the states of programmable buffer and virtual

SOSR ’18, March 28–29, 2018, Los Angeles, CA, USA Yikai Lin et al.

Mobility

Radio
Service

Buffer
Service

Buffer Engine

Flow
Service

Topology
Service

Switch Daemon

Network Controller

3 4

1 2 5

Programmable Buffer Switch

Figure 1: PB Framework Architecture

port. Buffers in different states (Sec. 3.4) carry out different
functionalities. Control applications manage these states and
fulfill their intentions through the northbound APIs (Sec. 3.5).

3.2 Programmable Buffer Switch (PBS)
In its essence, Programmable Buffer Switch (PBS) is a buffer-
enabled SDN switch. Besides the typical SDN switch com-
position (a pipeline of match+action tables, an on-switch
agent/daemon, and external ports), PBS is comprised of pro-
grammable buffers (buffers) and virtual ports (vports). To
manage the buffers and vports, a PBS implementation can
choose to either have a PBS agent (buffer engine) alongside
the default switch agent (See Figure 2) or extend the switch
agent with buffer/vport managing capabilities. As per the
SDN paradigm, buffers, vports, and match-action table en-
tries are dynamically created, configured and removed by
control applications running on top of the network controller.
Naturally, PBS can fall back to a regular SDN switch and be
completely backward compatible with SDN applications that
do not utilize PB APIs.

Programmable Buffers: Programmable buffers serve as
data-plane storage buckets on PBS nodes. Distinct buffers
have memory isolation and each buffer has an initial mem-
ory size specified at its time of creation and re-configurable
later by control applications. To make them really instru-
mental, the controller must create vports that bind buffers to
the switch (See buffer-1 and vport-1 in Figure 2). By default,
buffers store packets in the order they are received and sim-
ply implement a FIFO queue. They can also be configured
with other queuing polices (e.g. priority queue). Buffers do
not perform any manipulation of packet contents and any
such manipulation is done by the switch processing pipeline
(OpenFlow or P4) before the packets enter a buffer or after
they exit a buffer.

Virtual Ports: Vports are software interfaces in PBS that
bind buffers to a PBS node. Vports share the same ’port’ ab-
straction with external ports, i.e., its one end is attached to
the switch processing pipeline and the other end is either
attached to another entity (in this case a buffer) or free. Al-
though a vport is bidirectional, we intentionally give each

buffer-1 buffer-2

Table-1 Table-2 Table-3

vport-1

vport-2

vport-3

port-1

port-2

port-3

Network
Controller

Buffer
Engine

Switch
Daemon

OpenFlow/P4
Southbound
buffer API

Figure 2: PBS Architecture

vport twomodes of operations: RX, TX 2. In RX mode, packets
coming from the switching pipeline (following a flow table
entry) will enter the buffer that is bound by the vport. In TX
mode, packets in the buffer are sent to the switching pipeline.
One could think of buffers as virtual hosts from the switch’s
point of view. Thus, it is possible to bind multiple vports to
a buffer. Typically, however, one (in RX mode) or two (one
in RX and the other in TX mode) vports are attached to a
given buffer.
Vports and buffers themselves do not have the notion of

what a "flow" is. Vports fill and empty buffers, while buffers
queue packets without interpreting their headers or pay-
loads. Therefore, by specifying a match-action table entry,
the controller determines which set of packets should be sent
to or retrieved from particular buffers. In each table entry,
vports are specified as in-ports or out-ports depending on
the flow direction.
Note that once a buffer is created and bound to switch

by vports, the controller can reuse the same buffer for any
other network flow by simply modifying the match-action
table entries. For instance, a buffer initially used to store
all packets destined for mobile subscriber Alice can later be
used to store all packets destined for mobile subscriber Bob.
If desired, the same buffer can be used to store both Alice’s
and Bob’s network traffic at the same time.

3.3 Southbound Buffer API
For southbound communications between the Buffer Ser-
vice and Buffer Engines, we intend to make the APIs stable
and atomic (composable), since they support the most fine-
grained buffer operations.

As shown in Figure 2, Buffer Engine exposes programma-
bility and monitoring capabilities to authorized external con-
trollers through the PB southbound APIs. Table 1 shows the
2Explicit mode configuration is actually quite useful: it allows the vports to
have certain access control for traffic going through buffers. For example,
when a vport is in TX mode, any packets coming from the pipeline to this
vport will be dropped.

Pausing and Resuming Network Flows using Programmable Buffers SOSR ’18, March 28–29, 2018, Los Angeles, CA, USA

APIs to orchestrate the state of a buffer and vport, and to
query/subscribe buffer/vport status. The function of each
API call is pretty self-explanatory. One important issue to
point out is that the number of control messages transmitted
through the southbound PB channel does not necessarily
equal that of API calls, which could be quite large due to
their fine granularity. By bundling several API calls in one
control message, the overhead (delay) of actually performing
that many API calls could be further reduced. For example,
if a control application instructs the Buffer Service to create
three buffers B1,B2,B3 at switch S1, it generates only one
control message instead of three. We assume no bundling
throughout the rest of the paper and leave it for further study.
Next, we show the five typical states of a buffer and how

each transitions into another. These state transitions are
managed by the southbound buffer APIs.

3.4 Programmable Buffer States
There are five typical states of a buffer. Figure 3 depicts the
simplest scenarios of each state.

Buffering State: A buffer is bound to a switch by only
RX mode vports, which means there is only inbound traf-
fic towards the buffer. As mentioned in the last section, in
order for traffic to be steered into the buffer, there should
be match-action table entries specifying these vports as out-
port. Inside the buffer, packets will be placed at the end of the
FIFO queue unless otherwise configured by the controller.
If the buffer exceeds its capacity, either new packets will be
dropped (from the tail) or oldest packets will be dropped
(from the head) based on the buffer configuration set by its
control application.

Serving State: Opposite to the Buffering state, only TX
mode vports are binding the buffer to the switch. Packets
will be removed from the head of the FIFO queue, sent out
via the attached vports, and processed through matching
table entries.

Forwarding State: When both RX mode and TX mode
vports are bound to the buffer, it is in the Forwarding state.
Incoming packets will be placed at the end of the FIFO queue
while the oldest packets will be removed from the head.

Free State: If an empty buffer has no vports bound, it is
in Free state. A buffer starts in Free state when first created;
a buffer in Serving state transitions to Free state if it is com-
pletely emptied and unbound from vports. A Free state buffer
is essentially a resource that can be recycled.

Storing State: If a non-empty buffer has no vports bound,
it is in Storing state instead. A buffer in Buffering state tran-
sitions to Storing state if it is unbound from its vports. In this
state, buffers hold the packets as long as the switch exists
and the buffer is not removed by the control application.

 Match-Action Tables

StoringBufferingServing Forwarding

TX TXRX RX

Free

Programmable	Buffer	Switch

Packet external	port Packet	Flow

Figure 3: Five different states of a buffer.

Transitions between different states occur as a result of
one or more API calls listed in Table 1. A buffer starts in
the Free state with create_buffer command. It can transi-
tion to Buffering state or Serving state with create_vport (if
needed) and bind_buffer_to_vport. A Buffering state buffer
can transition to Forwarding state if a TX mode vport is
bound, or to Storing state if all vports are unbound with
unbind_buffer_from_vport, etc.
Note that, because of the explicit vport mode design, a

Forwarding State buffer can transition to Buffering State
by simply changing the TX vport to RX mode, and vice versa,
without even modifying existing match-action table entries.
As later shown in the buffer-enabled applications, this allows
the controller to be minimally involved (sending one control
message) and more scalable.
3.5 Northbound Buffer API
Common SDN controller implementations [5, 10, 12, 14]
come with basic network services like topology discovery
and flow management. These services provide northbound
APIs to upper layer control applications for managing data-
plane nodes while saving them from the troubles like dis-
covering the topology or crafting a control message from
scratch. Following the same paradigm, Buffer Service pro-
vides high-level buffer APIs to control applications to decide
where, when and how a network flow is buffered.

These APIs can be divided into two levels: task-level and
intent-level.Task-levelAPIs are directly composed by south-
bound buffer APIs that execute in a certain order to carry out
a common task. In Code Sample 1, we present two task-level
APIs that carry out twomost common tasks in buffer-enabled
applications: create a buffer in a given state and change a buffer
to a given state. They are both solely composed by south-
bound buffer APIs introduced in Section 3.3. Buffer Service
maintains a copy of the states of buffers and vports, thus in
the second function bufferStateChange an application does
not need to provide the current state of the buffer that it’s
operating on.

On top of the task-level APIs, we present two intent-level
APIs: pause_flow() and resume_flow(). Both APIs composed
of not only task-level buffer APIs, but also flow APIs.

SOSR ’18, March 28–29, 2018, Los Angeles, CA, USA Yikai Lin et al.

Table 1: Southbound Buffer APIs
API Parameters Notes
create_buffer() device_id, size, queue_type queue_type: default to FIFO
create_vport() device_id, mode, [port_num] vport mode: {RX, TX}
bind_buffer_to_vport() device_id, buffer_id, vport_id Bind the given buffer to given vport
unbind_buffer_from_vport() device_id, buffer_id, vport_id Unbind the given buffer from the given vport
set_vport_mode() device_id, vport_id, mode Change the mode of the given vport
remove_buffer() device_id, buffer_id Remove the given buffer
remove_vport() device_id, vport_id Remove the given vport
query_buffer() device_id, object, [rule] object: what to query, e.g. buffer utilization.

rule: notify subscribed application when metquery_vport() device_id, object, [rule]

1 // Task-level Northbound Buffer APIs
2 import pbService as pb
3
4 def createBuffer(swID, state, [buffer params...])
5 // create a new buffer
6 buf = pb.create_buffer(swID, [buffer params...])
7 // create vports and bind buffer to them
8 switch state:
9 case Buffering:
10 vp = pb.create_vport(swID, RX)
11 pb.bind_buffer_to_vport(swID, buf.id, vp.id)
12 case Forwarding:
13 vp1 = pb.create_vport(swID, RX)
14 vp2 = pb.create_vport(swID, TX)
15 pb.bind_buffer_to_vport(swID, buf.id, vp1.id)
16 pb.bind_buffer_to_vport(swID, buf.id, vp2.id)
17 // other cases...
18
19 def bufferStateChange(swID, bufID, state)
20 buf = pb.getBuffer(bufID)
21 switch buf.state and state:
22 case Free and Buffering:
23 vp = pb.create_vport(swID, RX)
24 pb.bind_buffer_to_vport(swID, bufID, vp.id)
25 case Buffering and Forwarding:
26 vp = pb.create_vport(swID, TX)
27 pb.bind_buffer_to_vport(swID, bufID, vp.id)
28 case Buffering and Serving:
29 pb.set_vport_mode(buf.vports[0], TX)
30 case Forwarding and Buffering:
31 pb.set_vport_mode(buf.vports[1], RX)
32 case Buffering and Storing:
33 pb.unbind_vport_from_buffer(swID, bufID, buf.

vports[0])
34 // other cases...

Code Sample 1: Task-level Buffer APIs

pause_flow(sw_id, in_port, flow_filter, [buffer_id]). Through
this API call, control applications decide where (i.e. which
Programmable Buffer Switch) to buffer what flow coming
from which port. Buffer_id is optional. If it is not provided,
Buffer Service will automatically allocate an unoccupied
buffer or create a new buffer. Depending on the status of
the target flow, Buffer Service might add a new match-table
entry to redirect the flow into the buffer, or, if the flow is go-
ing through a buffer already, simply change the state of that
buffer to Buffering. And as shown in Section 3.4, changing a
buffer from Forwarding state to Buffering state could be as
simple as just setting the TX vport to RX mode.

resume_flow(sw_id, out_port, flow_filter, [buffer_id]). This
API call allows control applications to turn Storing state

buffers into traffic sources or resume flows in a Buffering
state buffer by changing it to Forwarding mode. If a buffer_id
is not provided, Buffer Service will try to locate the buffer
used for storing the flow and redirect its content to the
out_port. Otherwise, it will add one or more table entries for
packets coming out of the given buffer. Note that flow classi-
fication happens twice in the second case, since flow filters
used for pause_flow() do not necessarily need to match those
used for resume_flow(). Applications could simply allocate
a huge buffer to store flows coming from different sources,
and later decide which sub-flows go to which destination.

4 SUPPORTING EXISTING APPS
Network buffering is a critical function required by many
existing applications. This section introduces two of these
applications in more details and show how they can be sup-
ported in a PB enabled network.

4.1 LTE Mobility Management (LMM)
As described in Section 2.1, LTE mobility management is
complex and requires flow buffering and routing across mul-
tiple nodes. The initial phase involves radio signal measure-
ments and reporting by the UE to its current base station
(Source eNB). Source eNB makes handoff decision based
on these measurements and requests handoff from a Target
eNB. If request is admitted, the Source eNB starts buffering
the downlink packets and instructs UE to establish a radio
connection with the Target eNB. The Source eNB sends its
buffered and in-transit packets coming from the Serving
Gateway (S-GW) to the Target eNB. The Target eNB buffers
these packets until radio connection is set up for the UE.
In parallel, the Target eNB through the Mobility Manage-
ment Entity (MME) performs a path switch from the S-GW
to itself for all future downlink traffic. To preserve packet
order, Target eNB buffers all the packets from the new path
until all the buffered and in-transit packets from the source
eNB are served. To facilitate the detection of last in-transit
packet, S-GW transmits a special packet with End Marker.
Once the marked packet is received by the Target eNB, it

Pausing and Resuming Network Flows using Programmable Buffers SOSR ’18, March 28–29, 2018, Los Angeles, CA, USA

1 // LTE Mobility Management with PB
2 import pbService as pb
3 import flowService as flow
4 import radioService as radio
5
6 self.on(HandoffStart, function(event)
7 // buffer 0 at source eNB
8 buf0 = event.sourceBS.buffers[0]
9 // buffer 1,2 at target eNB
10 buf1 = event.targetBS.buffers[1]
11 buf2 = event.targetBS.buffers[2]
12 // direct traffic from old path to target eNB
13 flow.FlowMod(buf0.vports[1], buf1.vports[0])
14 // detach UE
15 radio.detach(event.ue, event.sourceBS)
16 // switch path at anchor switch
17 flow.FlowMod(anchorSW.port[2], buf2.vports[0])
18
19 self.on(HandoffEnd, function(event)
20 // ue attaches to target eNB
21 radio.attach(event.ue, event.targetBS)
22 // turn buffer 1 into Forwarding State
23 pb.set_vport_mode(buf1.vports[1], TX)
24
25 self.on(IndicatorReceived, function(event)
26 // turn buffer 2 into Forwarding State
27 pb.set_vport_mode(buf2.vports[1], TX)

Code Sample 2: PB-enabled LMM Application

starts serving the buffered and in-transit packets from the
new path. This whole process is in place to ensure loss-free,
order-preserving packet delivery for good TCP performance.
In PB-enabled networks, the PBS data-plane abstraction

applies to eNBs as well. LTE Mobility management (LMM)
application runs on the controller and channel measurements
from the UEs as well as load information from the eNBs are
passed onto this application. LMM makes handoff decision,
target eNB determination, and admission control based on
these information. LMM sets up one programmable buffer
at Source eNB, where the UE is currently attached to, and
two buffers at the Target eNB, one for packets coming from
Source eNB and the other for downlink traffic coming from
the new path (Figure 4). All buffers are initially created in
the Buffering state. Once buffers are set up, LMM instructs
the UE to detach from the current eNB and attach to the new
eNB. It instructs the anchor switch to switch from old path to
new path while instructing Source eNB to change the state
of its buffer to Forwarding. At this point, all the buffered and
in-flight packets coming to Source eNB are diverted toward
the first buffer at Target eNB (green arrow in Figure 4). The
second buffer at Target eNB is still in the Buffering state and
hence all new path packets are buffered in this second buffer.
Once the radio link is established between UE and Target
eNB, LMM receives the completion signal upon which it
instructs Target eNB to change the first buffer state to For-
warding. Hence, two buffers at Source and Target eNBs are in
tandem serving UE the in-transit traffic coming via old path.
To ensure old path is cleared, when switching the path, LMM
also injects an indicator packet at anchor switch (for example,
using a packet-out message in OpenFlow protocol). The indi-
cator packet traverses anchor switch and Source eNB before

source-eNB
PBS 1

target-eNB
PBS 2

ISPs

Anchor Switch

Network
Controller

FMM LMM

SDN Switch Programmable Buffer PBS

Old Path New Path Buffered Packets

Figure 4: PB-enabled LTE Mobility Management

reaching Target eNB as the last in-transit packet from path
A. Since this packet is marked and every eNB is programmed
to notify the controller upon receiving it, LMM knows that
there are no in-transit packets left from path A. Now, LMM
instructs Target eNB to change the state of the second buffer
to Forwarding state. UE starts receiving packets from path
B. Code Sample 2 shows part of LMM in pseudo code.

4.2 NFV Flow Migration
NFV flow migration can be considered as a special version
of mobility management, as the mobility happens inside the
network instead of network edge. This use case is specifically
addressed in [24]. The authors first started using the SDN
controller to buffer in-flight packets during NF state transfer,
which leads to triangular routing and many other perfor-
mance and scalability issues. They later adopted an alterna-
tive approach [23], which instead requires the NF instance
to buffer in-flight packets before state transfer finishes.
With PB’s support, the controller only needs to set up

a Buffering State buffer for each new NF instance at the
same switch, and chain the buffer with its corresponding NF
instance with flow rules. This way, the buffer can be inde-
pendently managed by the controller and adjusted according
to different traffic volume and pattern without having to
modify the NF programs. Packets will stay inside the buffer
and be immediately available when state transfer finishes.

5 ENABLING NEW APPS
With PB’s APIs and abstractions, we can achieve more than
supporting existing applications. In this section, we intro-
duce two new network applications that PB enables: Fast
Mobility Management and Connectionless Communications.

5.1 Fast Mobility Management (FMM)
With 5G envisioning massive bandwidth improvement over
4G, the current radio access link technology in LTE networks
is no longer viable. This has researchers look into alterna-
tives such as Millimeter-Wave (mm-wave) and much denser
cellular deployments [40]. Abundant spectrum of high fre-
quencies and densification resolve the bandwidth shortage

SOSR ’18, March 28–29, 2018, Los Angeles, CA, USA Yikai Lin et al.

source-eNB
PBS 1

target-eNB
PBS 2

Anchor Switch

ISPs

SDN Switch Programmable Buffer PBS

Old Path New Path Sync Msg

Network
Controller

FMM LMM

Figure 5: PB-enabled Fast Mobility Management

problem, but such systems also require high directionality
and narrow beam widths, imposing major challenges in mo-
bile scenarios. Consider the scenarios where many roadside
or lamp-post base-stations are deployed with 10 to 20 de-
gree beam-widths. The beam-training takes 10s of millisec-
onds [43], and even at moderate vehicular speeds (e.g., 30
mph) with 5-meter separation between the base station and
road lanes, the residence time in each base station becomes
comparable to the beam-training time.
This becomes problematic for the LMM application. In

that, after each handoff, the second buffer at the target eNB
(See Figure 4) has to wait till the first buffer is emptied (old
path is clear) before it can start serving the UE. In theory, the
time it takes for the first buffer to empty is equal to or larger
than the handoff duration, because the first buffer stores
all in-flight packets during the handoff period. In practice,
due to control latencies, this time is even longer. Simply put,
LMM will not work under such extreme conditions because
residence time with a eNB could be shorter than handoff
duration. Therefore, we propose a new mobility manage-
ment solution that eliminates inter-eNB traffic forwarding
and supports much higher handoff frequencies, called Fast
Mobility Management (FMM).
This application takes a more aggressive approach to en-

sure packets are always ready whenever and wherever a UE
attaches, and it can detach anytime it wants. To enable this,
when a UE is attached to a particular eNB, all neighboring
eNBs (or a subset of them based on predictions of mobility
pattern) will be receiving downlink packets from the anchor
switch and buffering them. In other words, the anchor switch
is multicasting UE packets to all potential target eNBs. When
the UE moves and reattaches to another eNB, the buffer there
can immediately start serving the UE without having to wait
for the source eNB to forward the buffered packets. Without
buffer programmability, this kind of dynamic service cannot
be orchestrated unless the software in each base station is
upgraded. With PB, however, this application can be easily
supported as follows.

The FMM application provisions a buffer in Forwarding
state at the UE’s current attachment point (i.e., Source eNB-
PBS). At the same time, FMM provisions buffer for the same
UE in Buffering state for each potential next base station (i.e.,
Target eNB-PBS nodes). FMM also installs a forwarding rule
at the anchor PBS node of all these base stations to multicast
the UE traffic to Source and Target eNB-PBS nodes before
any handoff decision is taken. Thus, packets are buffered at
Target eNB-PBS nodes. Before UE starts detachment, FMM
changes the state of UE’s buffer at Source eNB-PBS to Buffer-
ing. After the reattachment, FMM changes the state of UE’s
buffer at the new eNB-PBS to Forwarding and UE can start
receiving packets from it. After the handoff, FMM can update
the set of Target eNB-PBS nodes, thus accordingly change
the multicast group at anchor PBS while terminating/recy-
cling the buffers provisioned for UE at eNB-PBS nodes that
are no longer potential targets.

Inter-buffer Synchronization: Since in FMMeach buffer
keeps their own copy of the packets, packet-loss or dupli-
cates become an issue. For example, if the target-eNB buffer
is sufficiently large, we should expect the first packet in it
to be older than the head-of-line packet of the TCP session.
In other words, there will be duplicate packets in the target
buffer. In contrast, if the target buffer is too small, there will
be packet loss. Both duplicates and losses can lead to inferior
TCP performance. To resolve this problem, there needs to be
a synchronization mechanism to align the target buffer head
with the source buffer head. That is, when handoff happens,
as the source buffer stops sending, the target buffer should
know what the last sent packet was and purge any packets
older than it. Obviously, this only works when the target
buffer is sufficiently large (has duplicates), since there is no
way to recover lost packets. Such synchronization only needs
to convey a unique packet identifier from the source buffer
to the target buffer, which is negligible compared to LMM’s
traffic redirection. In our experiments, we find 2 bytes of
IPv4 id and 2 bytes of transport layer checksum to be reli-
able for uniquely identifying packets even when encrypted.
Since control applications can decide which buffer imple-
mentation to use for their traffic, they can choose the right
identifiers based on the traffic pattern. Figure 5 depicts a
handoff scenario with FMM and synchronization enabled.

FMM vs. LMM: In the 5G era, as network slicing [36]
becomes the norm, different mobility management solutions
like FMM and LMM are expected to run on the same infras-
tructure serving different devices and users based on their
needs. Compared with LMM, FMM allocates more buffers
for each user since it uses multicast at the anchor switch
to ensure immdediate packet availability, which has higher
buffering overhead. Therefore, FMM targets a small portion
of users that are travelling at a high speed and thus handoff
much more frequently. In terms of control overhead, FMM

Pausing and Resuming Network Flows using Programmable Buffers SOSR ’18, March 28–29, 2018, Los Angeles, CA, USA

generates the same amount of control messages during each
handoff as LMM (managing the multicast group is outside
the control loop of handling handoffs).

5.2 Connectionless Communications
Connectionless network services which are, e.g., used to
support Internet of Things (IoT), have been one of the key
use cases discussed for next generation mobile networks
[30]. PB abstractions can be utilized by connectionless ser-
vices to have a slice of the underlying transport fabric as a
caching and content distribution infrastructure and enable
asynchronous communications between devices (device-to-
device communications).

To store/upload any content, the control application first
associates the content with a network flow. How this asso-
ciation is done using which packet header fields is imple-
mentation specific. Once the one-to-one association between
contents and network flows is done, to store a particular con-
tent on a given PBS node, control application should create a
distinct buffer for the content (i.e., for the corresponding net-
work flow) at the given PBS node in Buffering state. After it
ensures that all the flow packets are stored, the control appli-
cation can transition the buffer into Storing state (Figure 3).

If stored content is requested by another node in the net-
work, the IoT or content distribution application first sets
up a routing path and simply transitions the buffer of that
content into Serving state, which will automatically start
serving the requesting node.

6 EVALUATION
In this section, we present our prototype of Programmable
Buffer using open-source software and its scalability and per-
formance gains compared with alternative SDN solutions.

6.1 Prototype and Methodology
We prototype Buffer Service as a Ryu [14] controller mod-
ule which provides the northbound buffer APIs to other
applications. We implement Buffer Engine in C++ as a pro-
cess running alongside the software switch. Buffer Service
establishes connection with Buffer Engine via gRPC [6]. The
engine serves as both gRPC client and Docker agent. Pro-
grammable buffers are packaged as Docker [4] containers
managed by Buffer Engine via Docker APIs. Each container
runs a C program that receives IPC calls (e.g. bind/unbind)
from Buffer Engine. The motivations behind containerizing
buffers, besides ease of managing resources like CPU and
memory, is that control applications can choose between dif-
ferent buffer implementations by specifying a Docker image.
This allows different queue types and application-specific
tweaks (e.g. inter-buffer synchronization in Section 5.1) to
be pre-built and used flexibly.

We use two open-source Software Switch packages, Open-
vSwitch [11] and mSwitch [26], and two companion Virtual
Port implementations, TAP [17] interfaces and mSwitch
ports respectively. OpenvSwitch is OpenFlow-compatible
and thus used in our simulations (Section 6.3); mSwitch
is picked for its high port density and used in scalability
tests (Section 6.2.2). We also implement two packet process-
ing techniques for programmable buffers: Memcpy and Zero-
copy. Memcpy, as its name suggests, uses the Memcpy() func-
tion to copy packets from/to vport packet queues. Data copy
incurs high overhead under high bit rates. We thus imple-
ment a zero-copy programmable buffer with netmap [9] that
allows us to preserve packet buffers out of packet I/O queue
without data copy. We use this variant of programmable
buffer on top of mSwitch, and demonstrate superior per-
formance in Section 6.2.2. We also modify mSwitch to not
perform data copy between its ports to further reduce the
overhead. Programmable buffer size is set to 1024 packets
for benchmarks and 10000 for simulations. Unless otherwise
specified, we use an Ubuntu 16.04 (Linux 4.13.0) Desktop
with Intel core i7-7700K@4.2GHz quad-core processor and
16GB of RAM for our experiments.

6.2 Benchmark Results
It is widely acknowledged that future 5G networks should be
able to support high-bandwidth applications like 4K video
streaming, Virtual Reality and Augmented Reality while in-
curring ultra-low latency ([1, 2, 36]). Many believe the user
experienced data rate should be at least 50Mbps and up to
1Gbps depending on coverage and resource availability. Ac-
cording to [18], for 5G radio access network, the control-
plane latency should be less than 10ms and data-plane la-
tency should be around 1ms. The decoupled design of PB
allows it to scale up independently on the control-plane and
data-plane depending on the workload. To see if each com-
ponent of PB can meet these QoS metrics, we run several
benchmarks as described below.

6.2.1 Packet Rate and Latency. Since programmable buffers
are on the critical path of user traffic, we perform the follow-
ing experiments to get the steady packet rate and one-way
latency of single programmable buffer with varying packet
sizes. On the machine, we create a Forwarding state buffer,
two pkt-gen applications (from netmap) as traffic source and
sink, and connect them with two virtual ports. We set the
two pkt-gens to transmit and receive mode respectively, and
specify different packet sizes in each run. The three processes
are pinned to three CPU cores, and the batch size is set to 512.
We configure the virtual ports to operate as netmap pipes3
and there are no packet losses. The results are shown in Fig-
ure 6. As expected, buffer with zerocopy has constant high
3A shared memory packet transport channel supported by netmap.

SOSR ’18, March 28–29, 2018, Los Angeles, CA, USA Yikai Lin et al.

	0

	25

	50

	75

	100

64 256 512 1024 1514

zerocopy

memcpy

7.67St
ea

dy
	P
ac
ke
t	R

at
e	
(M

pp
s)

Packet	Size	(bytes)
Figure 6: Buffer Packet Rate with Varying Packet Size

Table 2: PB Latency Measurements
One-way Delay

(us)
Memcpy 5.28-6.00
Zerocopy 5.43-5.82

API Call
Execution Time

(ms)

create_buffer 39.9
create_vport 11.7
bind_buffer_to_vport 0.4
set_vport_mode 1.5
unbind_buffer_from_vport 1.4
flow_mod 1.3
remove_vport 27.0
remove_buffer 39.7

packet rate (90+ Mpps), while memcpy incurs higher over-
head as packet size increases, though still achieving 90+ Gbps
throughput with 1514-byte packets. This indicates that both
programmable buffer implementations are fairly efficient.
Similarly, we measure the one-way packet delay of pro-

grammable buffers by setting the pkt-gens ping and pong
mode respectively (packets travel a round trip and the RTT
is calculated at the ping side). We also use various packets
sizes up to 1514 bytes. The results are shown in Table 2. For
both zerocopy and memcpy versions with packet size up
to 1514 bytes, programmable buffers incur no more than 6
microseconds one-way packet delay, which is more than two
orders of magnitude smaller than the 1-ms 5G standard [18].

6.2.2 Data-plane Scalability. As 5G aims to serve massive
number of devices, scalability becomes one of the most crit-
ical criteria when evaluating the design of PB. We start our
scalability analysis by measuring the resource footprint of
programmable buffers which correlates with the number of
users one PBS can serve. In this test, we use the same setup as
in the last benchmark (with buffer on path, 1514-byte pack-
ets), but instead of saturating the bandwidth, we vary the
throughput and measure the corresponding CPU usage. Our
results show that at 40Gbps throughput, the memcpy ver-
sion of buffer consumes 48.2% CPU while zerocopy version
consumes only 5%. Both versions consume 0% CPU when
idle, which is expected.
To better understand how well PBS scales to larger num-

ber of users (flows), we carry out another experiment to
simulate up to 2048 active users (flows) simultaneously. Due

Table 3: Concurrent Flow(Buffer)s on PBS
of Flows 4 16 64 256 1024 2048
Throughput

(Gbps) 187 123 121 110 105 102

to inherent CPU core requirements to host a large number
of programmable buffers, we employed another Linux (4.11)
server with Intel Xeon E5-2690v4@2.6GHz 14-core proces-
sor and 64GB of RAM (4 cores assigned to traffic source, 4
to buffers and 1 to traffic sink). Each flow is handled by a
different buffer, totaling up to 2048 programmable buffers
on one PBS instance. We write a simple routing module for
mSwitch that (1) distributes incoming packets (from traffic
source) to each buffer based on destination IP address, and (2)
aggregates packets to one port (traffic sink). We use mSwitch
with this module enabled to connect traffic source and sink
with up to 2048 buffers, and record the aggregate throughput
as shown in Table 3. Although the absolute values could vary
on different machines, these results clearly demonstrate the
data-plane scalability of PB.

Finding 1. PBS can deliver 100+Gbps throughput with
over 2000 flows using 4 cores on a commodity server,
attaining 50 Mbps per flow that is twice the recom-
mended bandwidth for 4K video streaming [7].

Another factor contributing to programmable buffer’s re-
source footprint is memory. PBs have marginal memory
overhead on top of what is needed for storing the pack-
ets. As such the memory requirement becomes simply the
product of forwarding speed and the duration of traffic in-
terruption. E.g., for 100 Gbps bandwidth, it will be several
to tens of GBs. We argue that the amount of RAM available
on a commodity server (e.g. 128GB) is more than enough
to satisfy the memory requirements for traffic interruptions
at the scale of tens [25] to hundreds of milliseconds [24].
Further, PB dynamically (re)allocates buffer memory, unlike
existing solutions with pre-determined buffer size based on
estimation [45].

6.2.3 Control-plane Scalability. In the second row of Ta-
ble 2, we show the RTT measurements4 of each PB API call
and FlowMod [15] of OpenFlow. Our test application repeat-
edly calls each southbound API and measures the time to
complete each call. In our measurements, operations related
to create/remove buffers/vports have higher overhead than
simply binding vports to buffers and modifying vport modes.
This is expected since the former operations involve memory
(de)allocation. As mentioned earlier, buffers and vports have
minimal idle resource footprints, thus provisioning them be-
forehand can effectively remove their presence on the critical
path of latency-sensitive operations. Compared to FlowMod,
4We colocate the controller and PBS to minimize communication latency.

Pausing and Resuming Network Flows using Programmable Buffers SOSR ’18, March 28–29, 2018, Los Angeles, CA, USA

	0

	250

	500

	0.5 	0.6 	0.7 	0.8 	0.9 	1

better
Optimal
PB	LTE-MM
No-Buffering
Control-plane

Av
er
ag
e	
Th
ro
ug

hp
ut
	(M

bp
s)

Handoff	Frequency	(times/second)
Figure 7: Average Throughput of different LTE mobil-
itymanagement solutions on lowhandoff frequencies

other buffer API calls have similar or smaller latencies. As
discussed in Section 2.2, many previous works have focused
on improving the scalability of SDN control plane to support
carrier-grade workloads [10, 28, 35], which are complemen-
tary to PB’s design. For existing SDN applications, PB is fully
backward compatible and thus shares the same level of scal-
ability; for buffer-based applications (such as LMM shown in
Code Sample 2), since buffer API calls have similar costs, and
the number of these calls is minimized5, the control-plane
scalability is not much impaired.

6.3 Simulation Results
6.3.1 LTE Mobility Management. As described in Sec-

tion 4.1, PB allows critical core services to be virtualized
while keeping low-latency data-plane buffering function-
alities. One of the features PB offers is loss-free order-preserving
packet delivery, which is fundamental for high TCP through-
put and critical to many web services [37]. We implement the
LTE mobility management application using only PB APIs
and basic SDN flowmanagement APIs (i.e. FlowMod in Open-
Flow). For comparison, we also implement two alternative
solutions that do not guarantee loss-free order-preserving
delivery: one buffers packet at the control-plane, one does
not buffer any packet. The control-plane buffering solution
is what current SDN frameworks would adopt due to lack of
buffering abstractions for the data-plane; the no-buffering
solution serves as a baseline with only TCP retransmissions.
We compare these solutions by simulating the simplest

handoff scenario: one UEwith an active TCP session detaches
from one eNB and, after a set duration (50ms, typical LTE
handoff duration [22]), reattaches to a new eNB where the
TCP session is resumed (See Figure 4). The UE side (simulated
wireless link) bandwidth constraint is 500Mbps6, and the
end-to-end latency is 20ms. Server runs an iPerf process.
5As explained in Section 3.4, PB’s vport mode design allows applications to
change buffer state by simply changing the mode of a vport.
6Despite the term LTE mobility management, this scheme will be integrated
in the 5G infrastructure as 5G embraces different access technologies to
ensure seamless user experience. Therefore 500Mbps is not an overkill.

	0

	100

	200

	300

	400

	500

	10 	20 	30 	40 	50
No-buffering

Control-plane

Av
er
ag
e	
Th
ro
ug
hp
ut
	(M

bp
s)

Handoff	Frequency	(times/s)

Optimal
PB	FMM

Figure 8: Average Throughput of fast mobility
management solutions on high handoff frequencies

Consecutive handoffs are simulated with UE moving back
and forth between two eNBs. Handoff intervals range from
1s to 2s, which corresponds to a handoff frequency from 0.5/s
to 1/s. The results are shown in Figure 7. We calculate the
optimal number by assuming no throughput recovery delay.

Finding 2. PB-enabled LTE Mobility Management
yields near-optimal result for pedestrian and vehicular
speeds in small cell environments.

6.3.2 Fast Mobility Management. As described in Sec-
tion 5.1, the Fast Mobility Management application supports
high mobility by multicasting at the anchor switch. We im-
plement the FMM application with PB APIs and SDN flow
APIs similar to LMM. As mentioned in Section 6.3.2, we im-
plement a simple and efficient synchronization mechanism
inside FMM’s buffers. When the source buffer’s TX mode
vport is changed to RX (Forwarding to Buffering), a special
packet containing the identification information will be sent
to the target buffer and be used to purge duplicate packets.
In microbenchmark this mechanism incurs less than 1ms
delay for comparing and purging 10,000 packets, which is
one order of magnitude smaller than the handoff durations.
We carry out high-frequency handoff tests with the FMM
application and calculate the average throughput under each
setting. We selected 10ms as the handoff duration, and ten
handoff intervals ranging from 10ms to 100ms. In this way,
we can see how FMM performs when handoff duration is
larger than handoff interval. These settings combined give
us handoff frequencies ranging from less than 10 times/s to
50 times/s. Results are shown in Figure 8.

Finding 3. PB-enabled Fast Mobility Management so-
lution delivers near-optimal throughput with 5% or
less overhead for ultra high handoff frequencies.

6.3.3 Connectionless Communications. Bothmobilityman-
agement applications are data-plane intensive with mild
control-plane workload. In contrast, connectionless com-
munication (CC) application is less latency sensitive due to

SOSR ’18, March 28–29, 2018, Los Angeles, CA, USA Yikai Lin et al.

its asynchronous nature and less throughput hungry, yet im-
poses much higher control-plane overhead. An overwhelm-
ing number of IoT devices generate periodic burst of traffic
and requires the control-plane to handle these events effi-
ciently. We evaluate this scenario by running simulations on
a CC application that controls 1000 data sources and one data
sink. To simplify the setting, we set up one PBS instance con-
nected to 1000 virtual hosts working as "sensors" and another
virtual host that periodically collects the "sensor" data. In
each run, the "sensors" send an upload request to the applica-
tion, which assigns a small buffer for each of them and installs
the proper flow rules that direct the uplink traffic into each
buffer. After all data has been collected and stored in the net-
work, the server node sends a download request to the appli-
cation, which changes the state of each buffer and directs all
traffic toward the server node. We record the timestamp for
each stage throughout the process, such as "upload request
sent", "upload starts", "download finishes", on both end hosts
and controller. For comparison, we also implement a control-
plane solution that stores all "sensor" data on the controller.
To see if data volume affects the result, we give each "sensor"
two files to send: one’s size is 10KB and the other 1MB.

Sensor

Controller

t1 t2 t3 t4 t5 t7t6

upload
start

upload
end

controller handles upload request
controller buffers uploaded packets
sensor sends out data

Buffer

buffer stores data

Figure 9: Upload process timeline

Figure 9 shows a timeline of the upload process in both so-
lutions. For simplicity, here we assume both upload processes
take the same time7 to finish: t7-t1. For the CC application,
because control and buffering are decoupled, the controller
only handles one upload request and is occupied for t3-t2
which is constant. In contrast, the control-plane buffering so-
lution adds another t7-t5 which grows linearly with file sizes.
In our simulations, each upload request takes around

0.53ms to process, while the control-plane buffering pro-
cess takes 82ms for the 10KB file and 2 seconds for the 1MB
file. The download request takes around 0.54ms to process,
and the download process lasts 1ms and 85ms respectively.

Finding 4. PB-enabled Connectionless Communica-
tion application handles upload requests with constant
overhead, outperforming control-plane buffering by
160 and 4000 times for 10KB and 1MB files respectively.

7In reality control-plane buffering takes much longer due to limited control
plane bandwidth

7 DISCUSSION
PB’s applicability outside 5G and API generality. Even
though PB is strongly motivated by the use cases and visions
of 5G, we believe that PB could potentially be useful in other
scenarios as well, such as data center. The results shown
in Section 6.2 also demonstrate this potential. The APIs are
designed independently of the applications. In fact, two of
the three use cases (Fast Mobility Management and Connec-
tionless Communications) are developed after the APIs are
finalized. We believe the APIs are fairly general as it cap-
tures the three critical elements in controlling flow buffering:
What (flow matching), When (event triggered) and Where.

Limitations. PB is designed to be fully backward compat-
ible with existing SDN applications, thus its deployment is
independent of its utilization. That being said, PB might not
always be effective due to its reliance on e.g. low control la-
tency (controller proximity). Offloading partial control to PBS
(e.g. changing buffer state locally based on pre-configured
policy without involving the controller) could mitigate high
control latency. We leave this for further study.

Security considerations. As user packets are kept in-
definitely inside buffers, certain access controls need to be
in place to protect user privacy. For example, applications
should not have direct access to buffers&vports not created
by them (unless they are recycled by the controller), and
buffers should be emptied before reused. Malicious devices
could also try to DDoS attack by tricking applications into al-
locating exceptionally large buffers.We believe there are both
opportunities and challenges with Programmable Buffer in
the security area, and we leave them for future explorations.

8 CONCLUSION
A new SDN-NFV solution is proposed to allow external
controllers to manage the available memory on software
switches for orchestrating where, when and how network
flows are buffered. It is shown that the proposed abstrac-
tions can be applied to provide mobility management, as
it is done in the current LTE networks, with near-optimal
performance. PB significantly outperforms alternative SDN
solution that uses controller for buffering purposes. PB is
also backward compatible with existing SDN applications.
Benchmarks on the prototype show great performance and
scalability potentials of PB, for it exceeds 5G standards in
every aspect we tested. Programmable buffers can easily de-
liver 90+ Gbps throughput with large packets, and scale out
on Programmable Buffer Switches with acceptable overhead.
Moreover, the PB abstraction is powerful enough to support
fast mobility management that handles extreme mobility
scenarios with less than 5% performance drop. Last but not
least, the decoupling between control and buffering allows
the PB control-plane to be scalable, as demonstrated in the
connectionless communication use cases.

Pausing and Resuming Network Flows using Programmable Buffers SOSR ’18, March 28–29, 2018, Los Angeles, CA, USA

ACKNOWLEDGMENTS
This work was supported in part by NSF under award CNS-
1345226, and by gift funding from Huawei Technologies,
Inc. We would like to thank our shepherd, Radhika Niranjan
Mysore, and the anonymous reviewers for their constructive
and valuable feedback.We are also deeply grateful for Michio
Honda’s input on the paper and his assistance in adapting
mSwitch and netmap for our benchmarks.

REFERENCES
[1] 5G Vision: 100 Billion Connections, 1 ms Latency, and 10 Gbps

Throughput. http://www.huawei.com/minisite/5g/en/defining-5g.
html. (Accessed on 02/26/2018).

[2] 5G Vision Brochure. https://5g-ppp.eu/wp-content/uploads/2015/02/
5G-Vision-Brochure-v1.pdf. (Accessed on 02/26/2018).

[3] AT&T Unveils 5G Roadmap Including Trials In 2016 | AT&T. http:
//about.att.com/story/unveils_5g_roadmap_including_trials.html. (Ac-
cessed on 02/26/2018).

[4] Docker. https://www.docker.com/.
[5] Floodlight OpenFlow Controller. http://www.projectfloodlight.org/

floodlight/.
[6] gRPC. https://grpc.io/.
[7] Internet Connection Speed Recommendations. https://help.netflix.

com/en/node/306. (Accessed on 02/26/2018).
[8] M-CORD Open Source Reference Solution for 5G Mobile Wireless

Networks. https://www.opennetworking.org/solutions/m-cord/.
[9] netmap. http://info.iet.unipi.it/~luigi/netmap/.
[10] ONOS - A new carrier-grade SDN network operating system designed

for high availability, performance, scale-out. https://onosproject.org/.
[11] Open vSwitch. http://www.openvswitch.org/.
[12] OpenDaylight. https://www.opendaylight.org/.
[13] P4. https://p4.org/.
[14] Ryu SDN Framework. https://osrg.github.io/ryu/.
[15] SDN / OpenFlow / Message Layer / FlowMod | Flowgrammable. http:

//flowgrammable.org/sdn/openflow/message-layer/flowmod/. (Ac-
cessed on 02/26/2018).

[16] Service-Oriented 5G Core Networks. http://
carrier.huawei.com/~/media/CNBG/Downloads/track/
HeavyReadingWhitepaperServiceOriented5GCoreNetworks.pdf.
(Accessed on 02/26/2018).

[17] TUN/TAP - Wikipedia. https://en.wikipedia.org/wiki/TUN/TAP.
[18] 3GPP TR 138 913 V14.2.0. Study on Scenarios and Requirements for

Next Generation Acess Technologies, May 2017.
[19] J. G. Andrews, S. Buzzi, W. Choi, S. V. Hanly, A. Lozano, A. C. Soong,

and J. C. Zhang. What will 5G be? IEEE Journal on selected areas in
communications, 32(6):1065–1082, 2014.

[20] M. T. Arashloo, M. Ghobadi, J. Rexford, and D. Walker. HotCocoa:
Hardware Congestion Control Abstractions. In Proceedings of the 16th
ACM Workshop on Hot Topics in Networks, pages 108–114. ACM, 2017.

[21] A. Banerjee et al. Scaling the LTE Control-Plane for Future Mobile
Access. In Proceedings of the 10th ACM International on Conference on
emerging Networking Experiments and Technologies, 2015.

[22] A. Elnashar and M. A. El-Saidny. Looking at LTE in practice: A per-
formance analysis of the LTE system based on field test results. IEEE
Vehicular Technology Magazine, 8(3):81–92, 2013.

[23] A. Gember-Jacobson and A. Akella. Improving the safety, scalability,
and efficiency of network function state transfers. In Proceedings of
the 2015 ACM SIGCOMMWorkshop on Hot Topics in Middleboxes and
Network Function Virtualization, pages 43–48. ACM, 2015.

[24] A. Gember-Jacobson, R. Viswanathan, C. Prakash, R. Grandl, J. Khalid,
S. Das, and A. Akella. OpenNF: Enabling innovation in network func-
tion control. In ACM SIGCOMM Computer Communication Review,
volume 44, pages 163–174. ACM, 2014.

[25] D. Han, S. Shin, H. Cho, J.-M. Chung, D. Ok, and I. Hwang. Measure-
ment and stochastic modeling of handover delay and interruption
time of smartphone real-time applications on LTE networks. IEEE
Communications Magazine, 53(3):173–181, 2015.

[26] M. Honda, F. Huici, G. Lettieri, and L. Rizzo. mSwitch: a highly-scalable,
modular software switch. In Proceedings of the 1st ACM SIGCOMM
Symposium on Software Defined Networking Research, page 1. ACM,
2015.

[27] M. Irland. Buffer management in a packet switch. IEEE transactions
on Communications, 26(3):328–337, 1978.

[28] X. Jin, L. E. Li, L. Vanbever, and J. Rexford. Softcell: Scalable and flexible
cellular core network architecture. In Proceedings of the ninth ACM
conference on Emerging networking experiments and technologies, pages
163–174. ACM, 2013.

[29] X. Jin, X. Li, H. Zhang, R. Soulé, J. Lee, N. Foster, C. Kim, and I. Stoica.
NetCache: Balancing Key-Value Stores with Fast In-Network Caching.
2017.

[30] R. P. Jover and I. Murynets. Connection-less communication of IoT
devices over LTE mobile networks. In Proc. of IEEE SECON’15, pages
247–255. IEEE, 2015.

[31] K. Kogan, D. Menikkumbura, G. Petri, Y. Noh, S. Nikolenko, A. V.
Sirotkin, and P. Eugster. A Programmable BufferManagement Platform.
2017.

[32] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner. OpenFlow: enabling innovation in
campus networks. ACM SIGCOMM Computer Communication Review,
38(2):69–74, 2008.

[33] M. Moradi, L. E. Li, and Z. M. Mao. SoftMoW: A dynamic and scalable
software defined architecture for cellular WANs. In Proceedings of
the third workshop on Hot topics in software defined networking, pages
201–202. ACM, 2014.

[34] M. Moradi, F. Qian, Q. Xu, Z. M. Mao, D. Bethea, and M. K. Reiter. Cae-
sar: High-speed and memory-efficient forwarding engine for future
Internet architecture. In Proceedings of the Eleventh ACM/IEEE Sym-
posium on Architectures for networking and communications systems,
pages 171–182. IEEE Computer Society, 2015.

[35] M. Moradi, W. Wu, L. E. Li, and Z. M. Mao. SoftMoW: Recursive and
reconfigurable cellular WAN architecture. In Proceedings of the 10th
ACM International on Conference on emerging Networking Experiments
and Technologies, pages 377–390. ACM, 2014.

[36] NGMN Alliance. 5G White Paper. Next Generation Mobile Networks,
White Paper, 2015.

[37] B. Nguyen, A. Banerjee, V. Gopalakrishnan, S. Kasera, S. Lee, A. Shaikh,
and J. Van der Merwe. Towards understanding TCP performance on
LTE/EPC mobile networks. In Proceedings of the 4th workshop on
All things cellular: operations, applications, & challenges, pages 41–46.
ACM, 2014.

[38] J. S. Plank, M. Beck, W. R. Elwasif, T. Moore, M. Swany, and R. Wol-
ski. The internet backplane protocol: Storage in the network. In In
Proceedings of the Network Storage Symposium. Citeseer, 1999.

[39] Z. A. Qazi et al. KLEIN: A Minimally Disruptive Design for an Elastic
Cellular Core. In Proceedings of the 2nd ACM SIGCOMM Symposium
on Software Defined Networking Research, 2016.

[40] W. Roh, J.-Y. Seol, J. Park, B. Lee, J. Lee, Y. Kim, J. Cho, K. Cheun, and
F. Aryanfar. Millimeter-wave beamforming as an enabling technology
for 5G cellular communications: Theoretical feasibility and prototype
results. IEEE Communications Magazine, 52(2):106–113, 2014.

http://www.huawei.com/minisite/5g/en/defining-5g.html
http://www.huawei.com/minisite/5g/en/defining-5g.html
https://5g-ppp.eu/wp-content/uploads/2015/02/5G-Vision-Brochure-v1.pdf
https://5g-ppp.eu/wp-content/uploads/2015/02/5G-Vision-Brochure-v1.pdf
http://about.att.com/story/unveils_5g_roadmap_including_trials.html
http://about.att.com/story/unveils_5g_roadmap_including_trials.html
https://www.docker.com/
http://www.projectfloodlight.org/floodlight/
http://www.projectfloodlight.org/floodlight/
https://grpc.io/
https://help.netflix.com/en/node/306
https://help.netflix.com/en/node/306
https://www.opennetworking.org/solutions/m-cord/
http://info.iet.unipi.it/~luigi/netmap/
https://onosproject.org/
http://www.openvswitch.org/
https://www.opendaylight.org/
https://p4.org/
https://osrg.github.io/ryu/
http://flowgrammable.org/sdn/openflow/message-layer/flowmod/
http://flowgrammable.org/sdn/openflow/message-layer/flowmod/
http://carrier.huawei.com/~/media/CNBG/Downloads/track/HeavyReadingWhitepaperServiceOriented5GCoreNetworks.pdf
http://carrier.huawei.com/~/media/CNBG/Downloads/track/HeavyReadingWhitepaperServiceOriented5GCoreNetworks.pdf
http://carrier.huawei.com/~/media/CNBG/Downloads/track/HeavyReadingWhitepaperServiceOriented5GCoreNetworks.pdf
https://en.wikipedia.org/wiki/TUN/TAP

SOSR ’18, March 28–29, 2018, Los Angeles, CA, USA Yikai Lin et al.

[41] I. Seskar, K. Nagaraja, S. Nelson, and D. Raychaudhuri. Mobilityfirst
future internet architecture project. In Proceedings of the 7th Asian
Internet Engineering Conference, pages 1–3. ACM, 2011.

[42] A. Sivaraman, S. Subramanian, M. Alizadeh, S. Chole, S.-T. Chuang,
A. Agrawal, H. Balakrishnan, T. Edsall, S. Katti, and N. McKeown.
Programmable Packet Scheduling at Line Rate. In Proceedings of the
2016 Conference on ACM SIGCOMM2016 Conference, pages 44–57. ACM,
2016.

[43] S. Sur, V. Venkateswaran, X. Zhang, and P. Ramanathan. 60 ghz indoor
networking through flexible beams: A link-level profiling. SIGMETRICS
Perform. Eval. Rev., 43(1):71–84, June 2015.

[44] Y. Wang, G. Xie, Z. Li, P. He, and K. Salamatian. Transparent flow
migration for nfv. In Network Protocols (ICNP), 2016 IEEE 24th Interna-
tional Conference on, pages 1–10. IEEE, 2016.

[45] Y. Xu, Z. Wang, W. K. Leong, and B. Leong. An end-to-end mea-
surement study of modern cellular data networks. In International
Conference on Passive and Active Network Measurement, pages 34–45.
Springer, 2014.

[46] V. Yazici, U. C. Kozat, and M. O. Sunay. A new control plane for 5G
network architecture with a case study on unified handoff, mobility,
and routing management. IEEE Communications Magazine, 52(11):76–
85, Nov 2014.

	Abstract
	1 Introduction
	2 Why Programmable Buffer?
	2.1 Network Buffering Examples
	2.2 Related Work

	3 PB Framework
	3.1 Overview
	3.2 Programmable Buffer Switch (PBS)
	3.3 Southbound Buffer API
	3.4 Programmable Buffer States
	3.5 Northbound Buffer API

	4 Supporting Existing Apps
	4.1 LTE Mobility Management (LMM)
	4.2 NFV Flow Migration

	5 Enabling New Apps
	5.1 Fast Mobility Management (FMM)
	5.2 Connectionless Communications

	6 Evaluation
	6.1 Prototype and Methodology
	6.2 Benchmark Results
	6.3 Simulation Results

	7 Discussion
	8 Conclusion
	Acknowledgments
	References

